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Linear Quadratic Regulators with Two-point
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Abstract

This paper extends some well-known system theories on algebraic matrix Lyapunov and
Riccati equations. These extended results contain two point boundary conditions in matrix

differential equations and include conventional results as special cases. Necessary and

sufficient conditions are derived under which linear systems are stabilizable with feedback
gains derived from periodic two-point boundary matrix differential equations. An iterative
computation method for two-point boundary differential Riccati equations is given with
an initial guess method. The results in this paper are related to periodic feedback controls
and also to the quadratic cost problem with a discrete state penalty.

I. Introduction.

For a linear time invariant homogeneous
system
x(t) = Ax(t), (1.1)
where x(t) € R" and A is a n x n matrix, the
following well-known theory called a Lyapunov
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theory exists in the area of Lyapunov stability-
The system (1.1) is asymptotically stable
if and only if for any C such that [A, C] is
observable there exists a positive difinite matrix
K to the Lyapunov matrix equation

AK+KA+CC=0. (1.2)
For a linear time invariant dynamical system
x(t) = Ax(t) + Bu(t), (1.3)

where x(t) € R" and A and Baren x nand n
X m matrices respectively, the following theory
had been developed along with a linear
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quadratic cost problem[2]: The system (1.3)
is stabilizable if and only if for any matrix
C such that [A. C] is observable there exists
a positive definite matrix K to the algebraic
matrix Riccati equation

A'K+KA-KBB'K+C'C=0. (1.4)
While the computation of the solution of the
Lyapunov equation (1.2) is easy since it can be
transformed to a linear equation, that of the
Riccati equation (1.4) is difficult since it is
a nonlinear equation. Kleinman[3] suggested
an iterative method from which the solution
of (1.4) can be obtained by the succesive solu-
tion of the type (1.2).
known results that are extended in this paper.

It is these basic well-

The algebraic Riccati equation (1.4) is derived
from an infinite time quadratic cost problem
whose optimal control is given by

u(t) = - B'Kx(t) (1.3)

where the feedback gain is constant. For
feedback controls of time invariant systems
it has been a usual practice to seek controis
with time invariant feedback gains rather than
time-varying feedback gains since time-varying
gains are difficult to implement. Controls
with periodic feedback gains are easily imple-
mented in controllers with limited memory
requirement. Linear homogenious systems
with periodic coefficients have been demon-
strated to have several similar properties to
time invariant systems{11, 12]. However there
are little research results on feedback control
Recently

with periodic feedback gains.

Geering[1] considered an infinite time
quadratic cost problem with a discrete state

penalty
Jw =2 x'(KT)Fx(KT) + [ [x(1)C'Cx(t)
k-1 0

(1.6)
The optimal con-

+u'(Du(t)]dt
for the linear system (1.3).
trol to the problem (1.3) and (1.6) is given by

u(t) = -B'K(t)x(t) (1.7)
where
-K=A'K+KA-KBBK+C'C (1.8)

419

K(kT) = K(kT) + F ,k =0,1,2,3

2 ysdy

4... (1.9

The control law (1.7)41.9) has a piecewise
continuous periodic feedback gain and is one
of little-known periodic feedback gain controls.
Implications of discrete state penalty of (1.6)
in economic, political, and some engineering
processes are mentioned in [1]. The results

in this paper deal with differential matrix
equaions with two-
like (1.9) and

special cases.

Lyapunov and Riccati

point boundary conditions

include well-known results as
Most results in this work will be obtained
mainly from the properties on matrix equa-
tions, independently from the above optimal
It

research results on periodic open-loop control

problem. is noted that there are some
with periodic state trajectories for periodic

or nonperiodic processes, for example see
[13], which are different from feedback con-

trols with periodic feedback gains.

I1. Homogeneous Systems

In this section a well known Lyapunov
theory on the algebraic Lyapunov matrix
the differential

Lyapunov equation with a two point boundary

equation is extended to

condition. A matrix A is said to be stable if
the system (1.1) is asymptotically stable in
Lyapunov sense. A stability result on linear
systems is given in Lemma 2.1 as a simple

form which is necessary for this paper.

Lemma 2.1. Consider a linear time-varying

homogeneous systems,

x(£) = A(D)x(1), (2.1)

where A(t)
bounded n x n matrix. If there exists a piece-

1S a piecewise continuous and

wise continuous matrix W(t) such that there
exist &y > 0 and @, > 0 which satisfy
o [x1? < V(LX) & xX'W(H)x <a,[x|? (2.2)
and there exist @3 > 0 and d > 0 which satisfy
(2.3)

for t 2ty + d and for all tg € [0, o], then the

V(1 x(4xg,t5) ) = V(tg.xe) < - @3] xsl?



Linear Quadratic Regulators with Two-point Boundary Riccati Equations

system (2.1) is
stable.

Proof: Since A(t) is bounded, it follows that
there exists a function a4 (*) such that Hd(t, 7)ll

< aq(t-7) for all t, 7 where a4(+) maps R into

uniformly asymptotically

R and is bounded on bounded intervals. Thus
maxay,(s) .
< . <
XD < DU, to)l]+Ix(t)] < t0<s<to+cf"“°)l

for to+d 2 2 ty;. Also from (2.2) and (2.3)
we obtain o Ix(t)? < V({t, x(t,x(t:xp,to))
< V(to, Xo) - @3ix0 2 < V(tg, x0) < @ ixgl?

’

L "« .
which impies Ix(t)}* S&E IxoI* fort =ty +d.

1
For a given €, take § = min [e/B,\/&_le,/\/&;],
maxog (s)
toSs<tgtd
x(t) < € for t = tg.
of tp, the system (2.1) is uniformly stable.

where f3 2 Then Ixo ! < 8 implies

Since § is independent

Since the system (2.1) is uniformly stable,
for a given m there exists a y=vy(n) such that
Ix(t)] < n for all t 2>ty and Ixo ! < ¥(n). Let
a by 2 0Ois given. To prove uniformly asymp-
totic stability it is sufficient to show that
there exists T(m) such that ix(t){<y for some
t <to+ T and |xg! < by. Suppose there is
a xo with Ixgl < bg and Ix(t)| > v for t = t,.
Then from (2.2) and (2.3) follows that
oy Ix(to+nd)? < V(tg+nd, x(to+nd; xq, ty))
< V(to, xo) - a3lx(te + (n-DAd)? - <+ -
a3 ixg? <oylxel? -2 no;. Thus [x(tg+nd)|?
a, b} nazy?
. a

< Let N = min [n > 0: o, b3/

o

a; - noyy?jo; < y?] and let T = Nd. Then
ix(t)] < v for some t <ty + T, which implies
that {x(t)| < n for t 2 ty + T since the system

(2.1) is uniformly stable. Since T is indepen-

dent of 1y, the system (2.1) is uniformly
asymptotically stable. This completes the
proof.

Throughout this paper A{A) denotes the
eigenvalues of the matrix A and a periodic
matrix P(t), 0<<t<Coo, is defined from a given
P(t) defined over 0 <<t <XT such that

R P(t) 0<1<T
Bt &
2 b, t>T (2.4)

An extended Lyapunov theory is stated in the
following theorem.

Theorem 2.1.
if and only if for each matrix C such that
[A, C] is observable, F20, and a scalar T >0,
there exists a positive definite matrix solution
K(t)> 0, 0<t<T, such that

A matrix A is a stable matrix

—K(t) = A'K(t) + K(DA + C'C (2.5)

K(T) - K(0)=F. (2.6)

Moreover, for a stable matrix A, K(t)=>K, for
a F220, and K(t) =K, O0<t<T, if and only if
F = o0, where K; is the solution of the algebraic
Lyapunov equation (1.2).

Proof: (Necessity) The equation (2.5) can be
expressed as

oAt K(0)e At - f;) oA '(t-s)CaCe-A(t-s) ds
2.7

K(t) =

eA'(T")K(T)eA(T't) +f TeA G Ay,

(2.8)
From (2.6) and (2.7) we have

F = K(T) - K(0) = A TR (0)eAT - fTeA ()
C'cetT8gs - K(0) (2.9
which gives

eATK(0)AT - K(0) = - eAT(F + [TeAT-)
C'CeATH) 4g) AT (2.10)

The equation (2.10) is a discrete Lyapunov
matrix equation and the right side of (2.10)
Since N\y(eAT)
<1 for a stable matrix A there exists a unique
K(0)> 0 for the solution of (2.10) from well
known results on discrete Lyapunov matrix
equations. From (2.6) follows K(T) > 0 and
from (2.8) K(t) >0, 0<t<<T. (Sufficienty)
Let’s take a Lyapunov function for the system
(1.1) as

is a positive definite matrix.

V(t,x(1) = X" (OK(D)x(t). (2.11)
Since in (2.8) K(T)> 0 and T is a finite value

there exists positive constants «; and o
such that o;1 < K(T) < a,1, 0 < tT. This
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in return implies

ay Ix(DOf? < V(tx(1) < o [x(0)]2. (2.12)
Let 2=1[j : jTeltg, t}, t>1t,]. Since R(t) is
defined as in (2.4), it is piecewise absolutely
continuous on the interval {tg, t] and jumps at
iT, j€S2, that is, KGT) - K(GT) = -F, jeSl.
Thus we have

V(t,x(t;xs,ts)) - V(tg ,XS)

= f[‘S\-/(T‘x(T))dT + X, IVUT (T) - VET 16T
= [*V(7,x(1)dT - = %' GTIFXGT) < [ V(T x(r)dr
ts €2 %

= J}Zk'(r)ﬁ('r)x(r) +x (DKM (1) + X' (NK(T)x(1)d7

= j:sx'(r)[A'IZ(T) + K(MA + R(D] x(r)d7
= _ft‘Sx’(r)c’Cx(r)dT

= —x;fttSCA T " CeMT 19 grxg

< - a3 ixgl?, 1= tg+d, (2.13)
for some positive constant ay and an arbitrary
small ¢ > 0 since {A, C] is observable. Thus
the Lyapunov tfunction (2.11) satifies all
conditions of Lemma 2.1. Therefore the
systern (1.1) is asymptotically stable. This
completes the lirst part of the theorem. Let
K(t) = K(t) - K. Then we have

K=K=-AK-KA-C'C=-AK-KA (2.19)
and

K(T)-K(0) = F. (2.15)
From (2.14) and (2.15) follows that

R(1) = AR (0)e At (2.16)
ATE(0)e - R(0) = -F, (2.17)

from which follows that K(0) > 0 and thus
K= 0, 0<t<T.
the equation (2.17) can be expressed as

For the case of F=0

(e T K(0) + K(0)[-e'AT) = 0. (2.18)
Since Ri(eA'T) + )\j(—e'AT) # 0, K(0) is unique
and thus K(0) = 0. This implies K(t) = 0,0 <t
< T. This completes the proof.

Theorem 2.1 is an extension of a Lyapunov
theory on (1.2) in the sense that the latter

,21 -

can be obtained from the former with F = 0.
In the next section a well known theory on the
algebraic Riccati matrix equation (1.4) will be
extended to a differential Riccati equation with
two point boundary conditions.

III. Dynamical Systems

The pair {A, B], or the system (1.3), is said
to be stabilizable if there exists a constant
matrix L such that the system (1.3) is asymp-
totically stable with the control u = Lx. The
following result is an extension of the well
known theory on the algebraic matrix Riccati
equation,

Theorem 3.1. [A. B] is stabilizable if and only
if for each C such that [A, C] is observable,
F > 0, and a scalar T > 0 there exists a K(t) >
0,0 <t < T, such that
“K=AK+KA-KBBK+CC (3.1)
K(T) - K(0) = F. (3.2)
Moreover, for a stabilizable pair {A, B}, K(t)
> K fora F =0, and K(t) = K, 0 < t<T,if
and only if F = 0, where Ky is the solution of
the algebraic Riccati matrix equation (1.4).
Also the stabilizable system (1.3) is uniformly
asymptotically stable with the periodic feed-
back gain control

u(t) = - B'R(t)x(t), (3.3)
where K(t), 0 < t < oo, is defined as in (2.4)
(Fig. 1 (a)).

The proof of Theorem 3.1 will be left
until Theorem 3.2 is proven. The solution
of (3.1)43.2) looks, at first glance, very dif-
ficult to solve since it is a two-point boundary
value problem for a nonlinear differential
equation., But it can be easily computed
iteratively by solving linear equations as shown
in Theorem 3.2.

Theorem 3.2. Assume [A, B] is stabilizable
and [A, C] is observable. Let

-~ Ka+1 = (A-BB'Kn) Kn+1 + Kns1 (A-BB'K,,)
+KnBB'Kp +C'C (3.4)
Kn+ 1(T) - Kp+1(0) = F, n=0,1,2, ... (3.5)
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Then K;(t) =~ K(1), 0 <t <T, where K(t) is the
solution to (3.1)-(3.2) and Ky(t) is chosen such
that A-BB'Kq(t) is stable.

Proof: Assume that A-BB'ﬁn(t) is a stable
matrix, a; I < K, (1) S a1, 0 <t < T, for some
a; > 0 and a; > 0, and $,(t) is the state
transition matrix of A-BB'K,(t). Then I\
(@, (t))l <1 {11}. Relation (3.5) is expressed
as

Pn(T)Kns1(0)Pa(T) = Kye  (0) = =B (T)FD,(T)

= L3 Pa((C'CHK (DBB K (1)) p (Dt (3.6)
x(t) = Ax(t) + Bu(t) where u(t) = -B'K) (1)x(t)

consider a system (3.7)
and let F'(F(t) = C'C + Ron(OBB'Ryy). 1t is

claimed that [A-BB'Kn(t), F(t) is observable.
Consider a scalar value function

Wto, T) = ftT (x'(DC'Cx(1) + u'(Du(D))dt
0
- x'(to)f;q’n'(t, te) (C'C+ R, (1)BB'R (1))

x ©u(t, to) dt x (tg).
If for a small interval [t;, t,1 C [0, T] u(t)
is not identically zero, then J(t,, t,) > 0
since u(t) is piecewise continous. If for a
small interval [ty, t,] C [0, T] u(t) is iden-

t
tically zero, then J(t, t;) =x'(t1)ft2eA“’t1)
1

C'CeA(t_")dtx(tl ) > O since [ A, C] is observ-
able. Thus [A-BB'R,(t), F(t)] is observable.
Since K ,(t) and F(t) is periodic it is uniformly
observable [14].
term of (3.5) is negativedefinite and thus

From this result the last

there exists a unique K,;;(0) > 0. Since a
scalar T in (3.4)~(3.5) is a finite value K4 (D)
is bounded from above. It will be shown that
Kn+1 <Ku(1). From (3.4) follows that

-(kn-Kn+l )= (A-BB’Kn)I(Kn“Krﬁ'l )+(K.n —-Kn+1)

(A-BB'Ky)*+(Kp-Kp_; )BB'(Kn-Kn-1) (3.8)
with a boundary condition (Ky(T)-Kyu+1(T))

~(Kp{0)-K,+1(0)) = 0. Let Kn,n+1 = Ky
- Kn+1. Then we obtain

P TIKnni 1(0)Pn(T) - Kqne1(0)

== [ PN(DK 1 n (DO (1)L, (3.9)
from which follows K, 41(0) = Kp n44(T)
20 and thus K, 44+1(t) = 0 from (3.8)<2.8).
Now it will be shown that A-BB'K,.(t) is
a stable matrix where IA(nH(t) is defined in
(2.4).
satisfies

=Wt = (A-BB'Knt1 )W, | + Wpy  (A-BB'K,141)

Consider a matrix W, ;(t) which

+Kp+1BB'Kpi +C'C (3.10)
with an one-point boundary condition W4 {(0)
= Kp+1(0). Then K, and W, satisfies
Relation (3.8) with K,, and K,, replaced by
Kn+1 and W, ., respectively. The boundary
condition is Kpj.+(0)~-W,,1(0) = 0. This
relation and (2.7) implies that K4 ,(t) -
Wiu+1(t) <0, Therefore Wyi1(T) 2 Ky ((T)
2 Kn+1(0) = Wiy (0). Take x'(OWp 1 (D)x(t)
as a Lyapunov function for the matrix A-
BB,KIHI(”-
satisfies all the conditions in Lemma 2.1.
Since Wn+1(t) 2 Kn+1(0) > 0 and is bounded

from above because of a finite T in (3.10),

Then this Lyapunov function

it satisfies (2.2). Since W, ,;(t) is piecewise
absolutely continuous on the interval [tg, t]
and has jumps at jT, jef2 = [j : jTe[t,, t], t >
tel,

We have Wy GT) = Wns  GT ) = 0 and
V(Ex(tixs ) = V(ts %) = [ V(T x()dr
+ 2 X (DIWae 1 GT)-Wast (T XGT)
<= X () f] Pha1 (£,)(C'CHRne 1 (VBB'Kn

+1(t))'q)n+1(t,ts)dtx(ts) (3.11)

where @, ((t,ty) is the state transition matrix
of A-BB'n+1(1). Since it has been shown
that [A-BB'ﬁn+1(t), F(t)] is uniformly observ-
able where F(t) is such that F'(t)f(t) = C'C
Ko+1(t)BB'Rp (1), it satisfies the same relation
(2.13) for some a3 and some d > 0. Therefore
the matrix A-BB'K; (1) is a stable matrix. Con-
sequently K,.,(t}) is uniquely defined such

that 0 < K,4,(t) < K,,(t). Now we show

— 22 -
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that K4 1(t) =2 K where K > 0 is the positive

definite solution of the algebraic Riccati

equation (1.4). Let Kp.y ¢ = Kpyq(t) - Ks.

Then we have

- Kn+1,s=(A-B B,Kn)’KnH,S+ KHHS(A-—BB'KH)

+(Kn - Kg)BB'(K, -K,) (3.12)

with a boundary condition Kpu4p o(T) -

Ky, 5(0) = F, from which follows

(T Kot 5(OPn(T) = K1 5(0)= b (T)Febp(T)

[ (DK s(OBB Ky (DR (1)dt, (3.13)

From (3.13) there exists Kp;q, 4(0) 2 0 and
thus K1, (T) 2 0. Therefore Ky 4(1)=> 0
from the relation similar to (2.8). If [A, B} is
stabilizable there exists Kg(t) such that A-
BB'Kg(t) is stable. Thus we have proved that
there exist matrices K; =12 . . such that

Ki(1) 2 Kp(t) = - 2 K. (3.19)

From a theorem on monotonic convergence
of positive operators [15] there exists a posi-

tive definite matrix K(t) such that }11_{1’1‘” Ky(t)

= K(t) 2 K. An equivalent form of (3.4),

K 1(8) = Dp(OK o (030, (1) = [ P(t)

(Ko (t)BB'K, (1) + C'C)d, (t)dt,
approaches to
K(t) = (1) K(0) () - Jy (1)

(K(t)BB'K(t) + C'C) d(t)dt  (3.15)
from the dominated convergence theorem on
integral. The relation (3.15) is an equivalent
form of (3.1). This completes the proof.

It should be noted that the computation of
(3.4)«3.5) is easy since K, 4 1(0) can be obtain-
ed from the discrete algebraic Lyapunov
matrix equation (3.6) which can be trans-
formed to a linear equation. With this initial
condition Kj4+;(0), the solution of (3.4) is
easy since it is an one-point boundary value
problem rather than a two-point boundary
value problem. It is also noted that the con-
straint (3.5) can be relaxed such as follows:

Knp+1(T) - K44 (0) = Frug (3.16)

BIOE BO

where F; i=1, 2, 3, is chosen such that
F, >F2>F3> « +2F

and lim F, = F.

(3.17)
The good part of the proof
of Theorem 3.1 has been given in the proof
of Theorem 3.2,

follows:

The rest of it proceeds as

Proof of Theorem 3.1 (Necessity) This is
given in Theorem 3.2. (Sufficienty) Take
X' (DR(Ox(E) = V(t. x(t)) as a Lyapunov func-
tion of the system (1.3) with a control (3.3).
Then we have

V(t,x(tx,t6)) - V(tg,Xg) = fttSV(t,x(t))cit
+Z X DIRGTH-RGTHIAGT)
<= X () P(LENCCHR(DBB'R (1)

P(t,t)dt x(tg) (3.18)

where @(t) is the state transition matrix of
A-BB'K(t). Since [A-BB'K(t), F(t)] is uni-
formly observable where F'(t)F(t) = C'C +
K(BB'K(1), (3.18)
(2.3).
all conditions of Lemma 2.1.

satisfies the condition
Thus this Lyapunov function satisfies
Therefore the
control (3.3) is a stable control. Since linear
time invariant system can not be stabilized
with time-varying feedback control unless it
is stabilizable with a constant feedback control,
the system (1.3) is stabilizable. It is left to
show that K(t) = Kg, 0 <t < T, if and only if
F=0. In the case of F=0, K; can be a solution
to (3.1)-(3.2) since it satisfies (3.1) and (3.2).
The Property that K, is the unique solution
follows from the following result.

Theorem 3.3 If [A, B] is stabilizable and
[A, C]| is observable, then (3.1)-(3.2) has a
unique matrix solution.

positive  definite

Proof: Let K,(t) and K;(t) are two different

positive definite matrix

(3.2). Then we have

- (K1-K2) = (K; -K; )(A-BB'K})
+(A-BB'K,)'(K,-K,) (3.19)

(K1 (T)-K,(T)) - (K; (0)-K,(0)) = 0. (3.20)

Let K12(t) = Kl(t) “Kz(t) and q)l (t) and q)z(t)

solutions to (3.1)-

*234
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are state transition matrices of (A-BB'K,(t))
and (A-BB'K,(t)) respectively. The above
relations can be expressed as

@, N (T)K 12(0)®, "' (T) -K,2(0) = 0
which is equivalent to
@, "H(TIK 12(0) + K45 (0) (-, (T)) = 0,

Since A(D'7H(T)) + A(-d;(T)) # 0, a unique
solution K,(0) is the zero solution. Thus
Kiz(t) = 0, 0 < t<T, is the unique solution to
(3.19), which implies K;(t) = K,(t). This
completes the proof.

The results in Theorems 3.1, 3.2 and 3.3
characterize not only the differential matrix
Riccati equation with two-point boundary
conditions but also the optimal control pro-
blem for a quadratic cost with a discrete state
penalty. It can also be used as means for
botaining linear periodic feedback gain con-
trols. The computation of K(t) requires an
initial guess of a stable control for the iterative
method in Theorem 3.2. An easy method to
obtain a linear stable periodic feedback gain
control is suggested, which is easier to compute
than the control (3.3) and can also be used as
an initial guess for the iterative method.

Theorem 3.4 Assume that [A, B] is controll-
able. The system (1.3) is uniformly asymp-
totically stable with a control law

u(t) =~ B' P (t)x(t) (3.21)
where P(t), 0 <t < T, is obtained from
-P=-AP-PA' -PC'CP + BB’ (3.22)

P(T+d) =0

for any matrix C and d > 0 (Fig. 1 (b)).

Proof: Consider the adjoint system of (1.3) with
the control law (3.21):

x(t) = - (A-BB'P"1(1))'R(1). (3.23)

Take a Lyapunov func_tion

V(t,%(1) = K (O)PDX(L). (3.24)
It is well known that P(t,) 2 P(t,) for

t; <t, < T+d. Thus we have

PGTH - BT >0,i=1.2, .. (3.25)

Since [A,B] is controllable and T is a finite
value there exist oy > 0 and a5 > 0 such
that a4l < P(t) < asl and thus

X’ < V(R < aglx|®. (3.26)

From (3.24) and (3.25) we can have

VIt X(t5%,t5)) = Vts,Xs)

= [Vt (m)de + Z, X GDIPGT)-PATIIRGT)
> ffs\'/(t,i(t))dt

= J ‘Si'(t)P(t)i(t) + (OO (1) + R (OPORDAL

= [ R (OABO-P(H)A+2BB +P(1)R(Dat

= f: 2" ((P)C'CP(t) + BB)R(t)dt

>3 f:s‘bp(ts,t)BB"I’p'(ts,t)dtis (3.27)

2 oglxg2, t =15+ 8 (3.28)

where ®p(t, 7) is the state transition matrix
of [A-BB'P"‘(t)] and § and o are some posi-
tive numbers. Since [A, B] is controllable
[A-BB'P™!(t), B] is uniformly controllable [ 10]
and its controllability matrix (3.27) is posi-
tive definite for some 6 > 0. From (3.26) and
(3.28) the adjoint system (3.23) is exponen-
tially increasing, ie.lk(t) > a;ebt for a; >
0, § > 0 which in return implies that the
system (1.3) with the control (3.21) is ex-
ponentially decreasing, ie. [x(1)] < oz,;e'7t
for a7 > G and 7y > 0. This completes the
proof.

From the special structure of a time-in-
variant system, the condition of Theorem 3.4
can be weakened as follows.

Proposition 3.1. If {A, B] is stabilizable, then
the system is uniformly asymptotically stable



19794 10H BFLBEE F16E B5

with the following control law:
u(t) = - B'PT(t)x(1)

where f’T(t) is the generalized inverse of the
matrix P(t) obtained from (3.22).

The proof of Proposition 3.1 can be carried
out the same as in [6]. The control laws given
in Theorem 3.4 and Proposition 3.1 not only
provide easy means to obtain stable periodic
feedback gain control laws but also can be used
as initial stable control laws required for the
iterative method given in Theorem 3.2. It
will be interesting to see whether the control
law (3.21) is optimal in some sense. From the
way it is constructed the control law (3.21)
is the optimal control law for the system (1.3)
in the following sense [6]: Suppose the current
time t belongs to an interval {(-1)T, jT] for
some j. The control u(t) at the current time
t minimizes a quadratic cost

TSI Cxt) + u'(syus)ds (3.29)
subject to a state constraint
x(jT+d)=0. (3.30)

It is noted that jT+d is a function of the current
time t and jT+d changes when the current time
t belongs to another interval. This terminal
time will be called an intervalwise rcceding
horizon in contrast with a usual pointwise

receding horizon in {6, 7, 8].

V. Conclusion

This paper demonstrates that seemingly
difficult two-point boundary value problems
for differential Lyapunov and Riccati matrix
equations have such good properties as those
of algebraic matrix Lyapunov and Riccati
equations. This work also characterizes the
steady state optimal control with a quadratic
cost with a discrete state penalty. An iterative
computation method is suggested for two-point
voundary Riccati equations whose computa-
tion, otherwise, is very difficult. For a linear

stable periodic feedback gain control, an inter-
valwise receding horizon control law (3.21)
is presented in this paper which can also be
used as an initial guess of the iterative method.
Numeircal examples show the validity of these
methods. Robustness and asymptotic behavior
of the optimal system with two-point boundary
Riccati equations needs to be investigated along
with standard stead state regulators.
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