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ABSTRACT

In this paper, we propose that the chaotic behavior analysis in the chaotic

mobile robot embedding

Arnold, equation, Chua’s equation and hyper-chaos equation. In order to analysis of chaotic behavior in the
mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also
quantitative analysis such as Lyapunov exponent in the mobile robot with obstacle.

7=

Chaos robot, Lyapunov exponent, Time series

I . Introduction

Chaos theory has been drawing a great deal of
attention in the scientific community for almost
two decades. Remarkable research efforts have
been spent in recent years, trying to export
concepts from Physics and Mathematics into the
real world engineering applications. Applications
of chaos are being actively studied in such areas
as chaos control {1-2], chaos synchronization and

secure/crypto  communication [3-7], Chemistry
[8], Biology [9], and robots and their related
themes [10].

Recently, Nakamura, Y. et al [10] proposed a
chaotic mobile robot, where a mobile robot is
equipped with a controller that ensures chaotic
motion and the dynamics of the mobile robot is
represented by Arnold equation. They applied
obstacle with chaotic trajectory, but they have
not mentioned about the chaotic behavior except
Lyapunov exponent.
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In this paper, we propose that the chaotic
behavior analysis in the mobile robot of
embedding Arnold, Chua’s and hyper-chaos
equations with obstacle. In order to analysis of
chaotic behavior in the mobile robot, we apply
not only qualitative analysis such as time-series,
embedding phase plane, but also quantitative
analysis such as Lyapunov exponent in the
mobile robot with obstacle. In order to avoid
obstacles, we assume that all obstacles in the
chaos trajectory surface have an unstable limit
cycle with Van der Pol equation. When chaos
robots meet obstacles among the arbitrary
wondering in the chaos trajectory, which is
derived using chaos circuit equation such as
Chua’s equation, obstacles pull out the chaos
robots out of chaos trajectory because obstacles
have unstable limit cycle with Van der Pol
equation.

11, Chaotic Mobile Robot

2.1. Mobile Robot

As the mathematical model of mobile robots,
we assume a two- wheeled mobile robot as
shown in Fig. 1.

X

Fig. 1 Two-wheeled mobile robot

Let the linear velocity of the robot V[m/s]
and angular velocity [rad/s] be the input to the
system. The state equation of the four-wheeled
mobile robot is written as follows:

“f1 cosf0 v
i emoo) ) m
0 01

where (x,y) is the position of the robot and
0 is the angle of the robot..

2.2 Chaos equations

In order to generate chaotic motions for the
mobile robot, we apply some chaos equations
such as an Arnold equation or Chua’s equation.

1) Arnold equation [10]
We define the Arnold equation as follows:

a%1= A sinz; + C cosz, ()
z,= B sinz; + A cosz,

z,= C sinz, + B cosz,
where A, B, C are constants.

2) Chua’s equation

Chua’s circuit is one of the simplest physical
models that has been widely investigated by
mathematical, and experimental
methods. We can derive the state equation of
Chua’s circuit.

numerical

.’I;1= a(x2 _g(l'l )) (3)
Ty= &, — Ty + T4

T3=— [z,

where.

1 2n—1
glz) =my_et g kz_)] (my—y —myylz + el =l —c)

3) Hyper-chaos equation

Hyper—chaos equation is one of the simplest
physical models that have been widely
investigated by mathematical, numerical and
experimental methods for complex chaotic
dynamic. We can easily make hyper-chaotic
equation by using some of connected N-double
scroll. We can derive the state equation of
N-double scroll equation as followings.
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z= aly—h(z)] @)

y=z—y+z
z=— [y

Where,

2n—1
h(z)=m2n_lz+—;- S (my_, —mlz +cl—lz—c])
i=1

In order to make a hyper-chaos, we have
compose to 1 dimensional CNN(Cellular Neural

Network) which are identical two N-double
scroll circuits and then we have to connected
each cell by using unidirectional coupling or
diffusive coupling. In this paper, we used to
diffusive coupling method. We represent the
state equation of x-diffusive coupling and
y-diffusive coupling as follows.

x-diffusive coupling

9= aly? —h(z)9] +D, (2079 —229 4 4) (5)
Y= 76— ) 4 0

zb)=—ﬂy0), j=12,...L

y-diffusive coupling

z9=aly? —h(z)?] )
y(7)= Ill(j) _yU) +ZU) +Dy($(j—1) — Zz(i) +.’E)
=—pgy0,  j=1,2,..L

where, L is number of cell.

2.3 Embedding of Chaos circuit in the Robot
In order to embed the chaos equation into the
mobile robot, we define and use the Arnold
equation and Chua’s circuit equation as follows.

1) Arnold equation

We define and wuse the following state
variables:
, = D y + C cos X,
X, = D X + B sin X,
X, = 8
@

where B, C, and D are constant.
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Substituting (1) into (2), we obtain a state

equation on *1, X2, and *; as follows:

. = Dv + C cos X,
, = Dv + B sin x,
i, = o ®)

We now design the inputs as follows [10]:

v=A/D

w = C sin x, + B cos x, ©)

Finally, we can get the state equation of the

mobile robot as follows:

X, = Adsn x,;+ C cos x,

X, = Bsin x, + A4 cos x,

X, = C sin x, + B cos x,

X =V cos x,

. . (10)
y =V sin x,

Equation (10) includes the Arnold equation.

2) Chua’s equation
Using the methods explained in equations

(7)-(10), we can obtain equation (11) with Chua’s
equation embedded in the mobile robot.

x',=a(x2- g(x‘))
X, = X, ~ X, + x,

i, = - B =x,

Xx =V cos

. o X (1)
y = ¥V sin x

Using equation (11), we obtain the embedding

chaos robot trajectories with Chua’s equation.

3) Hyper-chaos equation
Combination of equation (1) and (5) or (6), we

define and use the following state variables (11)
or (12)
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T aly — n(gV]+ D, (Y=Y - 259 + 9+ 1))
2 2004 50
”3.3 = - Y (11)
M vCosS Ty
v vsinz,
z, a[y(j)—- h(z(j)]
2| |29y 4 204+ D (2T - 220 4 g UTY)
o= - ByY (12)
. vcosTy
vsinzg

Using equation (8) and (9), we obtain the
embedding chaos robot trajectories  with
Hyper-chaos equation.

itl. VDP(Van der Pol) obstacle.

In this section, we will discuss the mobile
robot’s avoidance of Van der Pol(VDP) equation
obstacles. We assume the obstacle has a VDP
equation with an unstable limit cycle, because in
this condition, the mobile robot can not move
close to the obstacle and the obstacle is avoided.

In order to represent an obstacle of the mobile
robot, we employ the VDP, which is written as
follows:

=y (13)
y=(1-yy—z

From equation (13), we can get the following
limit cycle as shown in Fig. 2.
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Fig.2 Limit cycle of VOP

IV. Chaotic behavior analysis in the Mobile
Robot

To analysis of chaotic behavior in the mobile
robot, we investigated the chaotic characteristics
from the mobile robot trajectories data. Firstly,
we applied embedding method as a qualitative
analysis and then we get the reconstruction
phase plane from the one dimensional mobile
robot trajectories data. Second, we calculated
Lyapunov exponent as quantitative analysis.

4.1 Embedding method

In order to reconstruct phase plane from data
of robot’s single variable, we applied an
embedding method proposed by Takens [11].
The embedding method is referring to the
process in which a representation of the attractor
can be constructed from a set of scalar
time-series. The form of such reconstructed state
is given as follows:

X, =[x(®), x(t +1),...., x(t+(m - 1)7] (13)

Where X(*) is a robot trajectory data, 7 is a
delay time, and 7 is an embedding dimension. It
is significant factor to get reasonable embedding
phase plane. In chaos mobile case, we choose 7
is 400 using an auto-correlation time and M is
chosen 5 because nearest false neighbor
disappears in that dimension. Fig. 3 Fig. 4 and
Fig. 5 shows time series of embedding Arnold
equation chaos robot from equation (10), Chua’s
equation chaos robot from equation (11) and
hyper-chaos equation robot from equation (12)
receptively.

Time Beries of smbedding robot equation
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Fig. 3 Arnold chaos robot time-series
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Fig. 4 Chua's chaos robot time-series
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Fig.5 Hyper-chaos robot time-series

4.2 Qualitative Analysis

With reconstructed state, the qualitative
chaotic degree of chaotic robot path is analyzed
in this section using embedding phase plane. Fig.
6 shows phase plane of these embedding state
which are originally robot paths when robot has
a (a) no obstacle, (b) fixed obstacle, and (c) VDP
obstacle from the Arnold embedding chaos
robot. Fig. 7 shows phase plane of these
embedding state which are originally robot paths
when robot has a (a) no obstacle, (b) fixed
obstacle, and (c) VDP obstacle from the Chua’s
embedding chaos robot. Fig. 8 shows phase
plane of these embedding state which are
originally robot paths when robot has a (a) no
obstacle, (b) fixed obstacle, and (c) VDP obstacle
from the hyper-chaos embedding chaos robot.

In Fig. 6, Fig. 7 and Fig. 8 we can recognize
that reconstructed robot path from one
dimensional mobile trajectories are very
complicated signal seems like chaos signal. We
can also confirmed that when the robots has a
obstacle, reconstructed phase planes are more
complicated compare with no obstacle.
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Fig. 6 Reconstructed phase plane (a) no obstacle, (b)
fixed obstacle, and (c) VDP obstacle.
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Fig.7 Reconstructed phase plane (a) no obstacle, (b)
fixed obstacle, and (c) VDP obstacle.
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Fig.8 Reconstructed phase plane (a) no obstacle, (b)
fixed obstacle, and (c) VDP obstacle.

3.3. Quantiative Analysis

In this section, we evaluate Lyapunov
spectrtum [12] in the mobile robot as a
quantitative chaos analysis and shows Arnold
chaos robot in Fig. 9 and Chua’s chaos robot in
Fig. 10 and also shows hyper-chaos robot in Fig.
11. Generally speaking, when the largest
Lyapunov exponent more than zero we can say
chaotic motion and less than or equal zero, we
say periodic motion. In Fig. 9, Fig 10 and Fig
11, we can confirm that reconstructed phase
planes are chaotic motion because there are
largest Lyapunov exponents more than zero.

Lyspuncy spectrum of Amoid squation without obstacis
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Lyspunav spacteurn of Amold equstion with obetacle
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Fig. 10 Lyapunov spectrum of mobile robot (a) without
obstacle, (b) with obstacle of Arnold robot
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Lyapunav spectrum of Amold equation without obstecle
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(b)
Fig. 11 Lyapunov spectrum of mobile robot (a) without
obstacle, (b) with obstacle of Chua's robot.
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Fig. 11 Lyapunov spectrum of mobile robot (a) without
obstacle, (b) with obstacle of hyper-chaos robot.
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V. Conclusion

In this paper, we propose that the chaotic
behavior analysis in the mobile robot of
embedding Arnold equation, Chua’s equation
and hyper-chaos equation with obstacle. In order
to analysis of chaotic behavior in the mobile
robot, we apply not only qualitative analysis
such as time-series, embedding phase plane, but
also quantitative analysis such as Lyapunov
exponent in the mobile robot with obstacle. In
the obstacle, we only assume that all obstacles in
the chaos trajectory surface in which robot
workspace has an unstable limit cycle with Van
der Pol equation.
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