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1. INTRODUCTION 
 

The control problems of axially moving systems occur in 
various engineering areas: For example, the strips in thin 
metal-sheet production lines, the cables, belts, and chains in 
power transmission lines, the magnetic tapes in recorders, the 
band saws, etc. The dynamics of these systems can be 
differently modeled depending on the length, flexibility, and 
control objectives of the system considered. For instance, the 
dynamics of a moving cable of an elevator can be described by 
a string equation, but that of a rubber belt in the traditional 
mill can be well represented by a belt equation. The difference 
between a string and a belt lies in whether the longitudinal 
elongation is considered or not.  

In axially moving systems, the transverse (lateral) vibration 
of the moving material often causes a serious problem in 
achieving good quality. It is also known that these vibrations 
are often caused by the eccentricity of a pulley, and/or an 
irregular speed of the driving motor, and/or a non-uniform 
material property, and/or environmental disturbances. Since 
the quality requirement as well as the productivity in a 
production line is getting stricter, an active or a semi-active 
vibration control is nowadays seriously considered. 

In this paper, the vibration control method to reduce the 
vibration which occurs during a continuous hot-dip zinc 
galvanizing process is considered. In order to achieve the 
uniformity of the zinc deposit on the strip surfaces and to 
reduce the zinc consumption, the strip should pass at 
equidistance from each of the air knives. But, due to the 
shifting and vibration of the strip, a discrepancy between the 
averaged deposited masses on the left and right strip surfaces 
and a non-uniformity of the deposited mass across the strip 
occur. These variations in deposited mass will degrade the 
quality of the product. 

 Depending on the thickness of the strip and the distance 
between two support points, Axially moving system can be 
modeled as one out of three models: a moving beam, a moving 
string, and a moving belt. In the zinc galvanizing line, the 
distance between two-support points is quite large compared 
to the strip thickness and width is small. Therefore, the 
modeling as a string is invested. In the given system, in-flux 
and out-flux mass exist and at the time varying boundary 
which the control force is given by the moving mass work is 
occurred. So we use Hamilton’s principle for system of 
changing mass to derive nonlinear equation of motion. 

The previous researches about axially moving string didn’t 
consider the elasticity of the string and used more than two 

sensors. Lee and Mote [4] derived an optimal boundary force 
control law that dissipates the vibration energy of an axially 
moving string and, in [5], analyzed the wave characteristics of 
the beam and derived optimal boundary damping laws as a 
function of linear velocity, linear slope, and linear force.  

 The contributions of this paper are the following. First, 
boundary control law about non-linear string to consider the 
constant tension and elasticity of the string is derived. Second, 
the derived boundary control law requires only one sensor to 
apply itself. Additionally, the damping coefficient of the 
actuator is designed. 

  
2. EQUATIONS OF MOTION 

 
Fig. 1 shows a schematic (model) of the axially moving 

string considered, which will be used in deriving equations of 
motion and a boundary control law. The string is assumed to 
travel at a constant speed. The left boundary is fixed in the 
sense that the boundary itself does not have any vertical 
(transversal) movement, but it allows the material to move 
longitudinally. However, the right boundary permits a 
transversal movement of the string under a control force and is 
time varying.  

 Let t  be the time, x  be the spatial coordinate along the 
longitude of motion, v  be the axial speed of the string, 

),( txw  be the transversal displacement of the string at spatial 
coordinate x  and time t , and L  be the length of the string. 
Then, the absolute velocity of the string at spatial coordinate 
x  is given by 

 { }j),(),(ij),(i txvwtxwvDttxDwvv xt ++=+= , (1) 

where xvtDtD ∂⋅∂+∂⋅∂=⋅
∆

/)(/)(/)( , and tt ∂⋅∂=⋅ )  ()  ( , 
=⋅ x)  ( x∂⋅∂ )  (  denote the partial derivatives in time t and 

spatial coordinate x, respectively. 
 The kinetic energy of the axially moving string including 

the actuator, and the potential energy are written as follows: 
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where T  is the kinetic energy, U  is the potential (strain) 
energy, ρ  is the mass per unit volume (material density), A  
is the cross-sectional area, m  is the mass of the actuator 
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Fig. 1 An axially moving strip under a right 

boundary control force. 
 
(touch roll), E  is the elastic modulus of the string, xε  is 
the strain due to the tension 0P . The potential energy is 

proportional to the increase in string length ds  when 
compared to the string at rest. For small slopes, see Fig. 2, the 
following relationship for string elongation is valid:  
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Therefore, (3) is rewritten as follows,  

  ∫ ⎟
⎠
⎞

⎜
⎝
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0
22

0 42
1 . (5) 

 Now, to derive the equations of motion, Hamilton’s 
principle for the systems with changing mass is utilized as 
follows: 

  ( ) 02

1
.... =++−∫

t
t brcn dtWWUTδ , (6) 

where ..cnW  is the non-conservative work, ..brW  is the 
virtual momentum transport at the right boundary (no 
variations at the left boundary). The variations of the 
non-conservative work and the virtual momentum transport at 
the right boundary are 

  ),(),(),()(.. tLwtLwdtLwtFW tcccn δδδ −= , (7) 
  { } ),(),(),(.. tLwtLvwtLwAvW xtbr δρδ +−= , (8) 

where )(tFc  is the control force, and cd  is the damping 
coefficient of the actuator. Now, the variations of (2) and (5), 
respectively, are 
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The substitution of (7)-(10) into (6) yields 
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Fig. 2 Schematic of string elongation for small slopes. 
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And the integration of (11) by parts yields 
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Note that 0),0( =twδ  because the left end is fixed (i.e., 
0),0( =tw ). Therefore (12) is rewritten as follows: 
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Since wδ  is arbitrary except for the requirement that the left 
end is fixed (i.e., 0),0( =twδ ) , the following governing 
equation and a boundary constraint at the right end are derived 
as follows: 

 xttt AvwAw ρρ 2+ 0
2

3 22
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⎜
⎝
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),(),()( tLwdtLmwtF tcttc +=  
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where ttw  is the local acceleration in the transversal 
direction of the string, xtw  is the Coriolis’ acceleration, and 

xxwv2  is the centripetal acceleration. 
 Remark: For a linear system, which is the case that 

02/3 2 =xEAw , the solution of (14) can be obtained through 
the method of separation of variables. In this case, the natural 

frequency is given by L,3,2,1),( 22 =−= nvc
cL
n

n
πω , where 

APc ρ0=  is called the wave velocity (see [8]). The natural 
frequency decreases as the traveling speed increases. If the 
traveling speed is equal to the wave velocity, the natural 
frequency becomes zero and a divergence of the solution 
occurs. In this sense, c is called the critical speed crv . Hence, 
the following is also assumed in this paper. 

   APvv cr ρ00 =<< . (16) 

If using the parameters in Table 1, we can calculate 
== APvcr ρ/0  99.407 m/sec.  

 
3. BOUNDARY CONTROL LAW 

 
In this section, we design a boundary controller including a 

damper to reduce the transversal vibration of a longitudinally 
moving elastic string.  

 A positive definite function in the form of total mechanical 
energy of the string excluding the actuator is first considered 
as follows:  
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where the subscript s stands for string. 
 Lemma 1: Consider a functional V~  
  )()()(~ tVtVtV cs += , (18) 

with the second (complementary) term is defined by 

  ( )∫ +=
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xtxc dxvwwxwAtV
0

)( βρ , (19) 

where 0>β  is a constant. Then (17) and (18) are equivalent, 
that is, there exist constants 0>β  and 10 1 << C  
satisfying 

  ( ) ( ) )(1)(~)(1 11 tVCtVtVC SS +≤≤− . (20) 
 Proof: The existence of such β  and 1C  will be proved. 

First, (19) becomes 
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where 
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Hence the following holds: 
  )()()( 11 tVCtVtVC scs ≤≤− . (23) 

By adding )(tV s  at both sides of (23), we obtain 

  ( ) ( ) )(1)(~)(1 11 tVCtVtVC SS +≤≤− . (24) 

In order to 01 1 >−C , the range of β  is restricted by 

  ( )
AL

EAAP
ρ
ρ

β
,,min0 0<< . (25) 

Verifying the range of β  using the parameters in Table 1, 
05.0/10 =<< Lβ  is obtained. In this paper, β = 0.03 is 

selected and 6.01 =C  is calculated. Lemma 1 is proved. ■  
 Now, with Lemma 1, the following Lyapunov function 

candidate )(tV , which is basically equivalent to the total 
mechanical energy of the string and the actuator, is proposed. 

   )()(~)( tVtVtV a+= , (26) 
where the additional actuated-related term )(tVa  is defined 
as 

  ( ){ }2),(),(
2

)( tLwLvtLwmtV xta β++= . (27) 

 To derive the time derivative of (26), a fixed control 
volume is introduced, as in Fig. 3. Volume II represents the 
part of the string that occupies the inner part of the control 
volume at an arbitrary time t , whereas I and III represent the 
influx and efflux of the string at dtt + , respectively. Using 
Reynolds transport theorem, the time-derivative of (26) is 
given by 

  
L

xVvtVdttdV
0

///)( ∂∂+∂∂= . (28) 

The first term in the right-hand side of (28) means the time 
rate of the equivalent energy within the control volume and 
the second term is the net energy flux into the control volume.  

 Noting that V  includes sV  in (17), cV  in (19) and aV  
in (27), individual terms are evaluated as follows: 
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Fig. 3 Control volume of an axially moving string 

system with a time varying right boundary. 
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Using (29) and (30), dttdVs /)(  becomes 
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For )(tVc , the following are derived: 
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Using (32) and (33), dttdVc /)(  becomes 
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To rewrite (34), the following integrations by parts are 
utilized. 
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Also, using the equation of motion (14), the following 
equation is derived. 

 ( )∫ ++
L

xxxtttx dxwAvAvwAwxw
0

22 ρρρβ  

  ∫
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛ +=
L

xxxx dxwwEAPxw
0

2
0 2

3β . (38) 

Therefore, the substitution of (35)-(38) into (34) yields 
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Also, the time-derivative of (27) is 
  dttdVa /)( ( ){ }),(),( tLwLvtLwm xt β++=  
   ( ){ }),(),( tLwLvtLw xttt β++× . (40) 

 Finally, the main part in this paper is stated as follows: 
 Theorem: Consider the following axially moving system 
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If the control force )(tFc  and the damping coefficient cd  
are given by 
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where )( LvmK β+=  is the control gain, then the 
closed-loop system is exponentially stable. 
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 ),(),( tLwdtLmw tctt −=  

  ),()(),(),(
2

2
0 tLwLvmtLwtLwEAP xtxx β+−

⎭
⎬
⎫

⎩
⎨
⎧ +− . (44) 

The substitution of (44) into (40) yields 
  ( ){ }),(),(/)( tLwLvtLwdttdV xta β++=  

  
⎭
⎬
⎫

⎩
⎨
⎧ −−−× ),(

2
),(),( 3

0 tLwEAtLwPtLwd xxtc . (45) 

Therefore, combining (31), (39), and (45), the time-derivative 
of the Lyapunov function candidate (26) is given by 
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Since v  is under the critical speed (see (16)), 2
0 AvP ρ>  is 

satisfied. Note that the first and eighth terms after the equality 
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sign have been split into two halves. Note also that the first 
eight terms followed by the inequality sign are all negative, 
whereas the last three terms are combined to make them 
negative as a whole. The following notations are introduced. 
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   ( ) 22/2 LAd c ρβφ −= , (48) 

   ( ){ }LvdvLA c βρβψ +−= . (49) 

From (48) and (49), if cd  satisfies the range 
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Therefore, from (46) and (51), the asymptotic stability of the 
closed-loop system is assured.  

 Now, the exponential stability is shown with further 
manipulation of the terms. (46) can be rewritten, by splitting 
the third term into two parts, as 
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By using the following inequality 
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and eliminating the first four and last (negative) terms, (52) 
can be rewritten as 
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If using (17) and (26)-(27), (54) can be expressed as  
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(55) means the following relationship 
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Therefore, all the variables included in (26) converge 
exponentially to zero. ■ 

 
4. IMPLEMENTATION AND SIMULATION 

 
Implementing (42) and (43) requires two things: 

measurement of ),( tLwxt and satisfaction of the range 
+− << ccc ddd . Since the damping range is related to a design 

problem of the actuator, it must be answered ahead. Using the 
parameters in Table 1 with β  = 0.03, (50) is verified as 
follows: 
   17.67 < cd  < 27.17. (58)  
Therefore, the existence of such a damping range is assured. 
The implementation of ),( tLwxt  can be achieved by 
backwards differencing of ),( tLwx  measured at each step. 

To demonstrate the performance of the closed loop system, 
computer simulations using the finite difference scheme have 
been performed. The plant parameters used for simulations are 
gathered in Table 1.  

With =β 0.03 given in (25), the control gain is calculated 
as follows: 

  39)2003.02(15)( =×+=+= LvmK β . (59) 
For simulation purpose, let 25=cd . Let the initial conditions 
be 

)3sin(2)0,( π=xw  [cm], 0)0,( =xwt  [m/s]. (60) 
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Fig. 4 The transverse displacement with control gain 
39=K , and damping coefficient 25=cd , 

),2( tLw  where 20=L m. 

 
Fig. 5 The transverse displacement with control gain 

39=K , and damping coefficient 25=cd , 

),( tLw  where 20=L m. 
 

Fig. 4 and Fig. 5 show the transverse displacement at 
2/Lx =  and the control force at Lx = , respectively. The 

designed controller eliminates the transversal vibration in 3 
seconds. Fig. 6 shows the variation of boundary control input 
at Lx = .  

 
5. CONCLUSIONS 

 
This paper investigated a transverse vibration suppression 

scheme of an axially moving non-linear string, and discussed 
the development of an efficient active controller and its 
implementation. In previous researches, the string was mostly 
modeled as a linear string. However, we derived a non-linear 
string PDE equation with actuator dynamics. The boundary 
control law was derived by Lyapunov method. Exponential 
stability of the closed-loop system was proved. The efficiency 
of the designed controller was shown by simulations. 
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Symbols Definitions Values 

A  Cross-section area 005.05.1 × m2 

L  Length of string 20 m

0P  Tension of the string 9,800 kN
m  Mass of the actuator 15 kg
v  String moving speed 2 m/s
ρ  Mass per unit area 850,7 kg/m2 

cd  Damping coefficient 25 Ns/m
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