• Title/Summary/Keyword: Low-rank approximation

Search Result 18, Processing Time 0.026 seconds

Compressed Sensing of Low-Rank Matrices: A Brief Survey on Efficient Algorithms (낮은 계수 행렬의 Compressed Sensing 복원 기법)

  • Lee, Ki-Ryung;Ye, Jong-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.15-24
    • /
    • 2009
  • Compressed sensing addresses the recovery of a sparse vector from its few linear measurements. Recently, the success for the vector case has been extended to the matrix case. Compressed sensing of low-rank matrices solves the ill-posed inverse problem with fie low-rank prior. The problem can be formulated as either the rank minimization or the low-rank approximation. In this paper, we survey recently proposed efficient algorithms to solve these two formulations.

Reverberation Characterization and Suppression by Means of Low Rank Approximation (낮은 계수 근사법을 이용한 표준 잔향음 신호 획득 및 제거 기법)

  • 윤관섭;최지웅;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.494-502
    • /
    • 2002
  • In this paper, the Low Rank Approximation (LRA) method to suppress the interference of signals from temporal fluctuations is applied. The reverberation signals and temporally fluctuating signals are separated from the measured data using the Ink. The Singular value decomposition (SVD) method is applied to extract the low rank and the temporally stable reverberation was extracted using the LRA. The reverberation suppression is performed on the LRA residual value obtained by removing the approximate reverberation signals. In overall, the method can be applied to the suppression of reververation in active sonar system as well as to the modeling of reverberation.

Iterative Low Rank Approximation for Image Denoising (영상 잡음 제거를 위한 반복적 저 계수 근사)

  • Kim, Seehyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1317-1322
    • /
    • 2021
  • Nonlocal similarity of natural images leads to the fact that a patch matrix whose columns are similar patches of the reference patch has a low rank. Images corrupted by additive white Gaussian noises (AWGN) make their patch matrices to have a higher rank. The noise in the image can be reduced by obtaining low rank approximation of the patch matrices. In this paper, an image denoising algorithm is proposed, which first constructs the patch matrices by combining the similar patches of each reference patch, which is a part of the noisy image. For each patch matrix, the proposed algorithm calculates its low rank approximate, and then recovers the original image by aggregating the low rank estimates. The simulation results using widely accepted test images show that the proposed denoising algorithm outperforms four recent methods.

Multi-view Clustering by Spectral Structure Fusion and Novel Low-rank Approximation

  • Long, Yin;Liu, Xiaobo;Murphy, Simon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.813-829
    • /
    • 2022
  • In multi-view subspace clustering, how to integrate the complementary information between perspectives to construct a unified representation is a critical problem. In the existing works, the unified representation is usually constructed in the original data space. However, when the data representation in each view is very diverse, the unified representation derived directly in the original data domain may lead to a huge information loss. To address this issue, different to the existing works, inspired by the latest revelation that the data across all perspectives have a very similar or close spectral block structure, we try to construct the unified representation in the spectral embedding domain. In this way, the complementary information across all perspectives can be fused into a unified representation with little information loss, since the spectral block structure from all views shares high consistency. In addition, to capture the global structure of data on each view with high accuracy and robustness both, we propose a novel low-rank approximation via the tight lower bound on the rank function. Finally, experimental results prove that, the proposed method has the effectiveness and robustness at the same time, compared with the state-of-art approaches.

Image Denoising for Metal MRI Exploiting Sparsity and Low Rank Priors

  • Choi, Sangcheon;Park, Jun-Sik;Kim, Hahnsung;Park, Jaeseok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.215-223
    • /
    • 2016
  • Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.

Compression of CNN Using Low-Rank Approximation and CP Decomposition Methods (저계수 행렬 근사 및 CP 분해 기법을 이용한 CNN 압축)

  • Moon, HyeonCheol;Moon, Gihwa;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.125-131
    • /
    • 2021
  • In recent years, Convolutional Neural Networks (CNNs) have achieved outstanding performance in the fields of computer vision such as image classification, object detection, visual quality enhancement, etc. However, as huge amount of computation and memory are required in CNN models, there is a limitation in the application of CNN to low-power environments such as mobile or IoT devices. Therefore, the need for neural network compression to reduce the model size while keeping the task performance as much as possible has been emerging. In this paper, we propose a method to compress CNN models by combining matrix decomposition methods of LR (Low-Rank) approximation and CP (Canonical Polyadic) decomposition. Unlike conventional methods that apply one matrix decomposition method to CNN models, we selectively apply two decomposition methods depending on the layer types of CNN to enhance the compression performance. To evaluate the performance of the proposed method, we use the models for image classification such as VGG-16, RestNet50 and MobileNetV2 models. The experimental results show that the proposed method gives improved classification performance at the same range of 1.5 to 12.1 times compression ratio than the existing method that applies only the LR approximation.

Compressed Representation of CNN for Image Compression in MPEG-NNR (MPEG-NNR의 영상 압축을 위한 CNN 의 압축 표현 기법)

  • Moon, HyeonCheol;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.84-85
    • /
    • 2019
  • MPEG-NNR (Compression of Neural Network for Multimedia Content Description and Analysis) aims to define a compressed and interoperable representation of trained neural networks. In this paper, we present a low-rank approximation to compress a CNN used for image compression, which is one of MPEG-NNR use cases. In the presented method, the low-rank approximation decomposes one 2D kernel matrix of weights into two 1D kernel matrix values in each convolution layer to reduce the data amount of weights. The evaluation results show that the model size of the original CNN is reduced to half as well as the inference runtime is reduced up to about 30% with negligible loss in PSNR.

  • PDF

Compression of CNN Using Low-Rank Approximation and CP Decomposition Methods (저계수행렬 근사 및 CP 분해 기법을 이용한 CNN 압축)

  • Moon, Hyeon-Cheol;Moon, Gi-Hwa;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.133-135
    • /
    • 2020
  • 최근 CNN(Convolutional Neural Network)은 영상 분류, 객체 인식 등 다양한 비전 분야에서 우수한 성능을 보여주고 있으나, CNN 모델의 계산량 및 메모리가 매우 커짐에 따라 모바일 또는 IoT(lnternet of Things) 장치와 같은 저전력 환경에 적용되기에는 제한이 따른다. 따라서, CNN 모델의 임무 성능을 유지하연서 네트워크 모델을 압축하는 기법들이 연구되고 있다. 본 논문에서는 행렬 분해 기술인 저계수행렬 근사(Low-rank approximation)와 CP(Canonical Polyadic) 분해 기법을 결합하여 CNN 모델을 압축하는 기법을 제안한다. 제안하는 기법은 계층의 유형에 상관없이 하나의 행렬분해 기법만을 적용하는 기존의 기법과 달리 압축 성능을 높이기 위하여 CNN의 계층 타입에 따라 두 가지 분해 기법을 선택적으로 적용한다. 제안기법의 성능검증을 위하여 영상 분류 CNN 모델인 VGG-16, ResNet50, 그리고 MobileNetV2 모델 압축에 적용하였고, 모델의 계층 유형에 따라 두 가지의 분해 기법을 선택적으로 적용함으로써 저계수행렬 근사 기법만 적용한 경우 보다 1.5~12.1 배의 동일한 압축율에서 분류 성능이 향상됨을 확인하였다.

  • PDF

Unsupervised feature selection using orthogonal decomposition and low-rank approximation

  • Lim, Hyunki
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.77-84
    • /
    • 2022
  • In this paper, we propose a novel unsupervised feature selection method. Conventional unsupervised feature selection method defines virtual label and uses a regression analysis that projects the given data to this label. However, since virtual labels are generated from data, they can be formed similarly in the space. Thus, in the conventional method, the features can be selected in only restricted space. To solve this problem, in this paper, features are selected using orthogonal projections and low-rank approximations. To solve this problem, in this paper, a virtual label is projected to orthogonal space and the given data set is also projected to this space. Through this process, effective features can be selected. In addition, projection matrix is restricted low-rank to allow more effective features to be selected in low-dimensional space. To achieve these objectives, a cost function is designed and an efficient optimization method is proposed. Experimental results for six data sets demonstrate that the proposed method outperforms existing conventional unsupervised feature selection methods in most cases.

Moving Object Detection Using Sparse Approximation and Sparse Coding Migration

  • Li, Shufang;Hu, Zhengping;Zhao, Mengyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2141-2155
    • /
    • 2020
  • In order to meet the requirements of background change, illumination variation, moving shadow interference and high accuracy in object detection of moving camera, and strive for real-time and high efficiency, this paper presents an object detection algorithm based on sparse approximation recursion and sparse coding migration in subspace. First, low-rank sparse decomposition is used to reduce the dimension of the data. Combining with dictionary sparse representation, the computational model is established by the recursive formula of sparse approximation with the video sequences taken as subspace sets. And the moving object is calculated by the background difference method, which effectively reduces the computational complexity and running time. According to the idea of sparse coding migration, the above operations are carried out in the down-sampling space to further reduce the requirements of computational complexity and memory storage, and this will be adapt to multi-scale target objects and overcome the impact of large anomaly areas. Finally, experiments are carried out on VDAO datasets containing 59 sets of videos. The experimental results show that the algorithm can detect moving object effectively in the moving camera with uniform speed, not only in terms of low computational complexity but also in terms of low storage requirements, so that our proposed algorithm is suitable for detection systems with high real-time requirements.