Compression of CNN Using Low-Rank Approximation and CP Decomposition Methods

저계수행렬 근사 및 CP 분해 기법을 이용한 CNN 압축

  • Published : 2020.11.28

Abstract

최근 CNN(Convolutional Neural Network)은 영상 분류, 객체 인식 등 다양한 비전 분야에서 우수한 성능을 보여주고 있으나, CNN 모델의 계산량 및 메모리가 매우 커짐에 따라 모바일 또는 IoT(lnternet of Things) 장치와 같은 저전력 환경에 적용되기에는 제한이 따른다. 따라서, CNN 모델의 임무 성능을 유지하연서 네트워크 모델을 압축하는 기법들이 연구되고 있다. 본 논문에서는 행렬 분해 기술인 저계수행렬 근사(Low-rank approximation)와 CP(Canonical Polyadic) 분해 기법을 결합하여 CNN 모델을 압축하는 기법을 제안한다. 제안하는 기법은 계층의 유형에 상관없이 하나의 행렬분해 기법만을 적용하는 기존의 기법과 달리 압축 성능을 높이기 위하여 CNN의 계층 타입에 따라 두 가지 분해 기법을 선택적으로 적용한다. 제안기법의 성능검증을 위하여 영상 분류 CNN 모델인 VGG-16, ResNet50, 그리고 MobileNetV2 모델 압축에 적용하였고, 모델의 계층 유형에 따라 두 가지의 분해 기법을 선택적으로 적용함으로써 저계수행렬 근사 기법만 적용한 경우 보다 1.5~12.1 배의 동일한 압축율에서 분류 성능이 향상됨을 확인하였다.

Keywords