20094 9% NAtE=3| =X M 46 M SP H A 5

=& 2009-46SP~-5-3

Se A%

15

32 9] Compressed Sensing 24 7|H

( Compressed Sensing of Low—-Rank Matrices: A Brief Survey on
Efficient Algorithms )

o] 7] ¥

= *

, ol

=

==

-q**
s =

(Kiryung Lee and Jong Chul Ye)

2

by
=5

Compressed sensing& &49] 48
FAQ 47 Ayl P¥de] Asw

e sparse

JX,OL r&i_

2
o

A Akd oAy A g &

"]E

=0 5
€99, Low-rank 3335«1 compressed  sensing<
low-rank B E oj&3ld] s)23t) £ EAE rank H43 T

ok
=

Belsl FAE Agaa givh H2 ¥y ANy A4
ill-posed inverse problemS
2 low-rank <A FEE YeERlE & gtk B =EdA e

wElFe] H3 surveyE A oqkﬂp

Abstract

Compressed sensing addresses the recovery of a sparse vector from its few linear measurements. Recently, the success
for the vector case has been extended to the matrix case. Compressed sensing of low-rank matrices solves the ill-posed
inverse problem with the low-rank prior. The problem can he formulated as either the rank minimization or the low-rank
approximation. In this paper, we survey recently proposed efficient algorithms to solve these two formulations.

Keywords :

low-rank approximation.

1. Introduction

Compressed sensing addresses the problem of
reconstructing a sparse vector from a few linear
measurements. As an inverse problem, it is ll-posed
since the number of measurement is assumed to be
much smaller than the dimension of the embedding
vector space. However, it has been shown that the
use of the sparsity prior leads to a successful
recovery. The sparsity level, which is the number of
nonzero elements of a given vector, denotes the
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Compressed sensing, singular value decomposition, restricted isometry property,

parsimony of the representation of the vector with
respect to the standard basis. This argument has
been extended to the matrix case,
parsimony is denoted by the rank of the matrix.
Compressed sensing of low-rank matrices can be

where the

interpreted as an extension of compressed sensing for
the vector case to the matrix case. There are many
applications of compressed sensing of low-rank
which
identification in control
Buclidean embedding
applications, see [1], [2], and the references therein.

matrices, include  low-order  system

theory, low-dimensional
in geometry. For more
The inverse problem of compressed sensing for the

matrix case addresses the reconstruction of a matrix
XEK™™ " from its linear measurement bE K*
given by b= AX where K denotes the scalar field,
which can be either B or C, and A is a given linear
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operator A : K™ " K" In this paper, we consider
two special linear operators: As a direct extension of
the compressed sensing for the vector case to the
matrix case, the reconstruction of a low-rank matrix
from its random linear measurements. Here the linear
operator A takes the ensembles of a given matrix
and can be considered as the collection of p random
m X n matrices. Matrix completion, also known as
the Netflix problem or the collaborative filtering, is a
special case of compressed sensing of low-rank
matrices where A is given explicitly in the following
way. Let 2 c {1,---,m}x{1,-,n} be a set of
indices of the matrix. Given @, a projection operator
Py K™ ">K™*" is defined by

M,  if(i,j)EN
P M), =i ’
(g )”] {0 else
Let p=102]. Then a linear operator

R,: K™ *"—>KP" is defined by assigning R,M a
vector obtained by staking nonzero elements of
PyM. The matrix completion corresponds to the
case when 4 = R,,.

The algorithms
categorized

reviewed in this paper are
into two classes depending on the
the

formulated as the rank minimization problem, which

formulation.  First, inverse problem can be

is formally written as:

Pl: miny rank(X)

subject to AX =b.

When the measurement b is corrupted by an
additive noise, the formulation is given by

P1": miny rank(X)

subject to |AX—bll; < e.

An altemative way to solve the inverse problem is
to formulate the inverse problem as the minimum

rank approximation problem.

P2

subject to rank(X) < r.

miny [AX—bl5
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in the
following perspective: When the minimum rank r of
the true solution is known, P2 can handle both the

noiseless and the noisy cases in a single formulation.
The

minimum of P2 is monotone decreasing in r and the

Two formulations can be compared

However, in practice, r is not available.
value can be found efficiently at more cost. Indeed,
this is not an issue in many applications where the
rank is assumed to be a small constant.

The goal of this paper is to review the recent
algorithms to solve the compressed sensing of
low-rank matrices. The effort has been made to
provide the motivation and the intuition of the
algorithms in an unified framework. The preliminaries
and the notations will be introduced in Section IL
Section I will review the algorithms that solve the
rank minimization problems P1 and P2. In Section IV,
the algorithms to solve the low rank approximation
problem P2 will be discussed. The comparison of the
reviewed algorithms will be given in Section V.

II. Preliminaries

Throughout this paper, we use two vector spaces:
the space of column vectors A? and the space of
matrices g m». The scalar field A will be either R
or C depending on the algorithms. For C?, the inner
product is defined by < z,y = yHi for z,y& C7,

where yH denotes the Hermitian transpose of y, and
the induced Hilbert-Schmidt norm is the Euclidean or

jnorm given by lzll2 =< z,z > for z€ C". For
™" the product defined by
<X, Yztr(Y?X) for X, YEC™*", and the
induced norm 1is the Frobenius norm given by
X% =< X, X> for X C™*". For the real case

where K= R, the Hermitian transpose is replaced by
the transpose denoted by 7.
One important tool used in many algorithms

inner is

reviewed in this paper is the singular value

decomposition (SVD) of a matrix. Every matrix
XeK™™" admits a singular value decomposition
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min (m,n)

o v where {ak}km;“fm’”) denote the
k=1 '

singular values in decreasing order, and (u;,vy)
denotes the pair of the left and right singular vectors
associated to o,. The singular values are always
nonnegative and the singular vectors are orthonormal.
Furthermore, Eckart-Young-Mirsky theorem [19]

states that Y, o,u,v? is a minimizer to
k=1

min X~ ¥ |1 rank(Y) < s}

where || || can be any unitarily invariant norm
such as the Frobenmius norm or the operator norm.
The rank of a given matrix X is defined as the
number of nonzero singular values.

At this point, it might be useful to remind the
analogous notions for the vector case. For a vector
zE K?, we consider a decomposition z = gp: Ti€s

=1

with respect to the standard basis {e;}}_,. The

sparsity level of , is defined as the number of
nonzero z,'s and is also known as the [,—norm. For
both the matrix and the vector cases, the rank and
the sparsity level are the pseudo norms that quantify
the parsimony in the representation of a matrix X
and a vector z, respectively.

Besides the similarity in the measure of the
parsimony, there is more analogy between the vector
case and the matrix case for the compressed sensing.
This analogy has been proposed by Recht, Fazel, and
Parrilo”?. In particular, the useful tools to derive the
performance guarantees for various compressed
sensing algorithms for the vector case have

analogues for the matrix case. The first tool is the

rank-restricted isometry property defined in the
following ~way: Given a linear  operator
A: K™ "> KP  the rank-restricted isometry

constant §,(A) is defined as the minimum constant
that satisfies

(1=4,(ANIX - < 14X, < (1+6,(ADIXE 1)
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for all X€ K™™" with rank(X) < r. Intuitively,
the property mmplies that the linear operator A
behaves well like an orthogonal system if its domain
is restricted as the set of low-rank matrices. Recht
et. al. [2] showed that there exist nearly isometric
families including the random linear operator that
takes the ensembles of a given matrix.

Unfortunately, the linear operator p, in the matrix
completion does not satisfy the rank-restricted
isometry. Candes and Recht [3] have shown that the
linear operator p. can also behave well if its domain
is further restricted to the low-rank matrices that are

incoherent to £y, ..

II. Rank Minimization

A. Convex Relaxation

The rank of a matrix is an analogue of the
sparsity level of a vector. Both are pseudo norms and
non-convex. Fazel et. al. [4] proposed a heuristic
called the nuclear norm minimization where the

nuclear norm is defined by

min{(m,n}
HX“*Z T
k=1
for a matrix X with the singular value

decomposition X = E ouve . The dual norm of the
k=1
nuclear norm is the operator norm defined by
1 X1, = max,0.

Indeed, the nuclear norm is a convex surrogate of
rank(X) for the set {X: IIxil, < 1}.

Nuclear norm minimization is a convex relaxation
of Pl and is formulated as

[1.X11
subject to AX=b,

P3: miny

Similarly, for the noisy case, a convex relaxation of
P1’ is formulated as
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P3': I1x11-+

subject to |AX—bll2 < e.

miny

They are both the analogue of the
minimization for the vector case. There
performance guarantee for P3 (or P3’) which will be
discussed in Section V with a comparison to other
guaranteed algorithms.

j~norm

1Is a

B. Semidefinite Programming

For the vector case, the l;—norm minimization is
cast as a linear programming. For the matrix case,
the nuclear norm minimization can be formulated as a
semidefinite programming (SDP) in the following
way [4], [2]. First, the variational characterization of
the nuclear norm with respect to its dual norm is

given by
Xl = max o {< X, Y>: |IYl, < 1},

By the Schur decomposition, it can be rewritten as

maxy tr{Y7X)
. m Y
subject to YTIn] > 0.

Here they considered the real case where K= R.
Otherwise, the objective should be replaced by
ltr(YTX)] to get an appropriate ordering. Given
SDP is a convex optimization with no duality gap
and its dual is given by

. 1
miny, g(tr(W'l)ﬂ-tr(VVz))

. |/0.¢
>
subject to [XT I’Vz] = 0.
From this expression of the nuclear norm || X,

nuclear norm minimization problem P3 is a SDP
given by

. 1
miny w. w, g(tr(VVl)+tr(I/V2))

Lo A4 #ZO| Compressed sensing S8 7|
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subject to
AX=0D.

The affine constraint in the noiseless case will be
replaced by a quadratic constraint for the noisy case.
SDP admits an interior point method which solves
the problem in a polynomial time. However, the
computation of the Hessian matrix prevents the
interior point method to scale up to large problems.
Alternatively, the first order methods can be used to
improve the scalability at the cost of a slower

convergence.

C. Projected Subgradient Method

Recht, Fazel, and Parrilo [2] have also discussed
the use of the subgradient method to solve P3. The
nuclear norm minimization P3 (and P3) can be
considered as a constrained optimization problem
where the objective function is nonsmooth. For the
noiseless case, the feasible set of P3 is a linear
variety determined by the affine constraint A X =b.
For the noisy case, the feasible set of P3’ is an
ellipsoid determined by

HAX—-bl?2 < €. In both cases, the feasible sets are

the quadratic constraint

convex and the projection onto these sets can be
easily computed. Furthermore, the subdifferential of
the nuclear norm at xis explicitly given by

alxl = {ovi+ w: UvTw=0,wv=0,IM, < 1},

where X= UXVH denotes the singular value
decomposition of X. For the derivation, see [5] and
the reference therein. Then the subgradient method
generates a sequence of the feasible points with the

following update

Xk+1(_H(Xk‘3kYk)7 Ykea”Xk”*

where I denotes the projection onto the feasible
set and s, is the step size for each iteration.
However, the convergence result is not available for
this approach.
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D. Singuiar Value Thresholding

To overcome the SDP formulation of the nuclear
and Shen [6]
proposed an efficient algorithm to solve P3, which is
based on the proximal method in the optimization.
They considered the regularization of the problem by

I X1%

norm minimization, Cai, Candes,

, 1
P minge g lXIL+ S IXI

subject to AX =5,

First they showed the following relation between
the original problem and its regularization. Let X7
denote the solution to P, then X" converges to the
solution to Pl in Frobenius norm as t—co. The
benefit of the regularized formulation is that the dual
problem admits an efficient algorithm. Since P, is a
convex optimization, there is no duality gap. The
Lagrangian is given by

: 1
MXw%=ﬂMh+§%m&+<y¢—AX>.

The dual problem is an unconstrained maximization
of the objective function g(y) = min yZ(X,y), which
is concave and ‘non-differentiable. They used a
subgradient method to solve the dual problem. A
subgradient of min-type function g(y) is given by

o — —_—
oy LXy) = AX,

where 5(;,2 argmin yZ(X,y).

= 1

X,= argminXTHX]l*-i-EHX—A*yHg (2)

Indeed, the unique solution to (2) is given by
5(2—-— D_(A*y). D.(M)  denotes the

singular-value-thresholding operator and is defined
by

Here

D.(M) = Udiag({max (0,0, — 7’)};: 1) Ve

where M= Udiag({0,,}7_ ) V"is the singular

2
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value decomposition of M.

Algorithm 1 SVT

Iy« 0
2: while stop criterion is false do
3 XD (A%)
4% ye—y+ib-AX)
5
6

: end whilg
. return X

IV. Low Rank Approximation

A. Greedy Algorithms

Greedy algorithm such as Matching Pursuit (MP)
[8] and Orthogonal Matching Pursuit (OMP) [9] have
for the
compressed sensing for the vector case. Lee and
Bresler [7] introduced the notion of the atomic
decomposition to extend the greedy algorithms for

been proposed as efficient algorithms

- the vector case to the matrix case.

(570)

A matrix XEK™*" satisfies rank(X) < r if
and only if X is spanned by r rank-one matrices.
Atomic decomposition denotes the representation of a
given matrix as a linear combination of rank-one
matrices. The set of atoms O of K™*" is defined
as a refinement of all rank-one matrices such that
any two distinct matrices in O are not collinear.

The correlation maximization in greedy algorithms
for the vector case is extended to the matrix case by
using the atomic decomposition. Matching Pursuit
(MP) [8] and Orthogonal Matching Pursuit (OMP) [9]
choose the index k€ {1,---,n} that maximizes the

correlation |ay (b— Ax)| between the zth column g
of A and the residual in each iteration, where z is

the solution of the previous iteration. Given a set [
let P, denote the projection operator onto the

subspace spaimmed by W in the corresponding
embedding space. When U= (y) is a singleton set,
P, will denote Py. From

laf (b— Az)l = | < A®(b— Az),e), > Ll
= ||\P, A%~ Az)ll,

it follows that maximizing the correlation implies
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maximizing the norm of the projection of the image
under A of the residual b— Az onto the selected
one dimensional subspace.

the

The following selection rule generalizes

correlation maximization to the matrix case.

max e | <b= AX, 4> Ll =max,c JIP,A (b~ AV, (3)

where A": K*->K™ ™ denotes the adjoint operator
of 4 By the Eckart-Young Theorem, the basis of
the best subspace is obtained from the singular value
decomposition of M= A"(b—AX), as ¥ =up?,
where u, and v, are the principal left and right
singular vectors. Applying the selection rule (3) to
update X recursively leads to greedy algorithms
generalizing MP and OMP to the matrix case.

Atomic decomposition also generalize the selection
rule in recent greedy algorithms such as CoSaMP
[10] and Subspace Pursuit [11]. The selection rule
chooses the subset J of {1,---,n} with [A=s
defined by

laf (b~ A2)| > o] (b— Az)l, VEELVje J @)

This is equivalent to maximizing

k;)af (b— A2’ =1IP, A%b~ Al

In other words, selection rule (4) finds the best
subspace spanned by ¢ elements in £ that
the of the vprojection of
M= A"b— Az) onto that ¢-dimensional subspace.
the

maximizes norm

The following selection rule generalizes

selection rule (4) to the matrix case.
maxy . o{llPpd b AX)p: |0 < 7}

A basis @ of the best subspace is again obtained
from the singular of

M=A"(b—AX), as L"’Z{Pkukvfl}

value  decomposition

T

e where

and vy, k=1,---,7 are the 1 principal left and right
singular vectors, respectively and for each k, p,€ K
satisfies |p;| = 1. Note that W is an orthonormal set

although this is not enforced as an explicit constraint

A4 #EO Compressed sensing =S¢ 7iH
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in the maximization.

Algorithm 2 MP for Low Rank Approximation
Iy — b,)/(\' —0
2fork=1,..rdo
3 ¥ agmax [PoAy|p
&  Z+— arg n}gn{“b - AX |, : X e span(y)}
s X—X+2z
6 y—y—AZ
7 end for
& return X

Algorithm 3 OMP for Low Rank Approximation
y—bX 0,0 —0
fork=1...rdo
toe— SAY
v argmax [ PoA"yl g
T v Uy
X~ argm%n{“b - AX|,: X € span(¥)}
ye—b— AX
end for
return X

BT M

[ =S

With the generalized correlation maximization, Lee
and Bresler [7], [12] proposed Atomic Decomposition
Minimum Rank Approximation (ADMiRA) which is
analogous to CoSAMP [10] for the vector case. In a
similar way, the subspace pursuit can be extended to
the matrix case. ADMIRA refines the estimation of
the atoms that spans the approximate low-rank
solution. A performance guarantee of ADMiRA has
been derived in terms of the rank-restricted isometry.
The performance guarantee will be discussed in
Section V.

B. Power Factorization

Haldar and Diego [13] proposed using the power
factorization to solve P2, which is an alternating
optimization method to minimize a bi~convex
objective function. A matrix XE K™ " satisfies
rank(X) <r if and only if X=LR¥ where
LEK™ " and REK"™". With this factorization,
the objective function in P2

is rewritten as

%IIb—A(LRH)Hz, which is a bi-convex function in

(L,R), ie. the function is convex in L for fixed R
and is also convex in R for fixed L. This implies
that once the other variable is fixed the problem
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reduces to a least square problem. The convergence
of the algorithm is shown in flavor of the monotone
decrease of the objective. The optimality of the
obtained solution is not guaranteed.

Algorithm 4 ADMiRA
i )? haad 0, @ A V’
2 while stop criterion is false do
I " v . 5,
f arggjgg{‘[P‘pA (b—AX)”F HEL RS Zr}
¥ WU _
5 X+ argn%xén{ilb - AX||,: X € span{¥)
o ¥ mpa{|R], i<
7 X = FX
8: end while
9: return X

Y

=

Algorithm 5 SP for Low Rank Approximation
X’ (), @ — B
while stop criterion is false do

! — * _ o .

E’ al‘gl\[]li{z:l‘é “P\pA (b AX)”F D) € 7'}

4 Ve—wuw
5 X arg mé,n {]|b - AX|l,: X & span(¥)
6 v «—argglgg{“P.y}i“F ) < r}

7 X argm%n{lib -AX|,: X € span(@)}
& end while ~
9: return X

[

C. Manifoid Optimization

Keshavan, Oh, and Montanari [14] considered the
matrix completion for the real case where the linear
operator 4 is Ro |

Algorithm 6 Power Factorization
I: L Lot LQ: R e R()
2 while stop criterion is false do

L argmLin1 [[b~ ACLR™)||> for fixed R

o

& R argm}%n 3 Hb - A(LRH)HE for fixed L
5 end while
& return X

A matrix XER™™" satisfies rank(X) < r if
and only if X=USVT where USR™™" and
VER™™" are orthonormal matrices. Here S= R" <"

need not be a diagonal matrix. With this factorization,
P2 can be written as

. 1
min ;¢ V{;llﬁg( Usvh —ul: vtu=1,viv= 1;}

(572)
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By introducing
1
F(U,V) = ming|Ro(USV?) bl

the formulation is equivalently rewritten as

ming AF(UGV): UTU=L,vTV=1},

Since F(U,V) satisfies
FUQV)=FUV)=FUVQ)

for any r by r orthogonal matrix Q, F(U, V) can
be considered to be a function defined on the product
of denoted by
M(m,n) = G(m,r) X G(n,r) where the Grassmann
manifold G(n,r) denotes the set of all r-dimensional

subspaces in R". The problem is now written as

two Grassmann  manifolds

min, AF(GV): (U V)EM(m,n)},

Evaluation of F(U, V) for given (U, V) requires
solving a least square problem with r? variables.
Although the geometry and algorithms

optimization over manifolds have been well studied

on

[15], the global convergence is not guaranteed in
general. They were able to derive a performance
guarantee that guarantees the global convergence in
the following two steps. They first find a good initial
point by the operation called trim. The trim operator
replaces the columns and rows with sufficiently
many known entries by zeros. As a result, the
trimmed matrix is located in a small neighborhood of
the global optimum where there is no other
stationary point. The convergence to the global
optimum is then guaranteed by the gradient descent
algorithm over the Grassmann manifold with a line

search.

Algorithm 7 Spectral Matrix Completion
I Z « trim{Rgb)
2 Zp = UpSoV! — argrriin{HZ — X[z : rank(X) <7}

3 ((},f}) o argxlxgivgx{ﬁ([»’, Vy o (UV) € M{im.n)}
starting from (U ,’VO)
~ 1 ol
B — — TSV
(S arg min ‘ b— Ro(USV )”2)

s return X = USVH

=
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V. Comparison of algorithms

The algorithms reviewed in this paper can be
compared by using two criteria. The first criterion is
the performance guarantee and the other criterion is
the computational complexity.

A. Performance Guarantee

There two types of the performance guarantees.
The first one is given in terms of the rank-restricted
‘isometry. These performance guarantee is restricted
to the applications with linear operator satisfying the
rank-restricted isometry. The
low-rank matrices

reconstruction  of
from its random ensembles
corresponds to this case. Let X, denote the matrix to
be reconstructed from the linear measurement
b= AX,. First, Recht et al showed the rank
minimization P1 can uniquely determine X,.
Theorem 51 [2] If 6,,(A) <1, then X, is the
only matrix such that rank(X) < r and AX=5.
This theorem also applies to P2. However, the rank
minimization is NP-hard and it is desired to have the
performance guarantee on the efficient algorithms.
The algorithms to the nuclear norm
minimization (SDP or SVT) and ADMIiRA have been
proved to have the performance guarantee. For the

solve

ideal case where X|, is exactly low-rank and there is
in the X, can be
reconstructed in polynomial time under certain

no noise measurement,

conditions on the linear operator. In practice, X, may

be approximately low-rank and the measurement can
be corrupted with an additive noise. For this more
general case, the distance between the solution
obtained by the algorithms and X, can be bounded

by the best rank-r approximation error and the
strength of the noise with scaling by constants.
Theorem 52: [16] If §&5.(A) < 0.1, then the

approximate solution X to P3’ satisfies

b

Vr

1X— Xilp < C—=lIX~ Xl + Cllvll,

22 A4 ™I Compressed sensing 2 7Y
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where the constants C; and €, only depend on
the rank-restricted isometry constant.

This theorem applies to SDP formulation of P3
and SVT.

Theorem 53 [7] Assume that A
6,,(A) < 0.04. Then, after at most 6(r+1)
iterations, ADMiRA provides a rank- , approximation

satisfies

X of X; which satisfies

- 1
1X— Xl < 20{1X— Xl p+ —=IlX— X Il + Il
T

7
where ¢ is the unrecoverable energy.
The required condition for the performance

guarantee of ADMIRA is slightly more demanding
compared to that of the nuclear norm minimization.
However, the verification of the condition is more
difficult than the reconstruction problem itself and
there is no known polynomial time algorithm to
verify the condition. It has been only shown that
some random linear operators satisfy the condition
asymptotically with high probability. In very high
dimension where the asymptotic works, the difference
in the order of the restricted-isometry constant does
not make significant difference in the performance. In
the mean time, ADMiRA is the only known iterative
algorithm such that the number of iteration is
bounded by a constant only dependent on r.

The other kind of the performance guarantee is
derived for the matrix completion. Candes and Recht
(3] showed that the linear operator p. for the
matrix completion does not satisfy the rank-restricted
isometry. Instead of the rank-restricted isometry,
Candes and Recht [3] showed that the matrix
completion by P3 can be successful for the low-rank
and incoherent matrices. They have shown that some
generic models have the incoherence to the linear
operator p... OptSpace by Keshavan et. al. is
the

another guaranteed algorithm- for matrix

completion.

B. Computational Complexity
Applications of the compressed sensing for the
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matrix case requires the scalability of the algorithms
to manage large scale problems. For the nuclear
norm minimization, SVT is an efficient algorithm
with the scalability whereas SDP cannot be used for
large problems. ADMiRA, Power Factorization, and
OptSpace are also efficient algorithms with the
scalability. Interestingly, these efficient algorithms
share common components that dominate the other
computation.

The first component is the singular value
decomposition. Indeed, it is not necessary to compute
the whole singular value decomposition. Computing
the truncated SVD for a few leading singular values
suffices. The input matrix for SVD are often sparse
depending on the property of the linear operator A
For that purpose, the efficient software such as
PROPACK [17] has been used for SVT and
ADMiRA. Alternative way to compute SVD of large
matrices is to use the randomized algorithms such as
one proposed in [18].

The other component is the least square problem.
ADMiIRA, Power Factorization, and OptSpace have
the least square problem in their iterations. In
particular, for OptSpace, the least square problem is
required to evaluate the objective function. There are
many efficient algorithms to solve the least square
problem including Richardson iteration and conjugate
gradient method.

If we solve the least square problem by using the
Penrose-Moore pseudo inverse, which also involves
the singular value decomposition, the complexity of
these two problems can be regarded comparable. The
gain of using improved methods seem to be similar
for both cases. If it is in the case, the complexity of
one iteration of these algorithms (SVT, ADMiRA, FP,
OptSpace) can be said all comparable and the overall
complexity will be dominated by the number of
iterations.
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