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Abstract 

 
In multi-view subspace clustering, how to integrate the complementary information between 
perspectives to construct a unified representation is a critical problem. In the existing works, 
the unified representation is usually constructed in the original data space. However, when the 
data representation in each view is very diverse, the unified representation derived directly in 
the original data domain may lead to a huge information loss. To address this issue, different to 
the existing works, inspired by the latest revelation that the data across all perspectives have a 
very similar or close spectral block structure, we try to construct the unified representation in 
the spectral embedding domain. In this way, the complementary information across all 
perspectives can be fused into a unified representation with little information loss, since the 
spectral block structure from all views shares high consistency. In addition, to capture the 
global structure of data on each view with high accuracy and robustness both, we propose a 
novel low-rank approximation via the tight lower bound on the rank function. Finally, 
experimental results prove that, the proposed method has the effectiveness and robustness at 
the same time, compared with the state-of-art approaches. 
 
 
Keywords: Multi-view subspace clustering, rank-norm approximation, multi-view fusion, 
spectral structure, ADMM. 
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1. Introduction 

In some real-world problems, only using single view information does not satisfy the 
real-world demand very well. Thus, solving problems by the representation with respect to 
multiple views, i.e. multi-view learning [1], becomes an important approach. Even further, 
when the multi-view learning is applied into the field of clustering, the multi-view clustering is 
proposed [2], which needs to integrate these multiple views together to perform clustering. 
Recently, much progress has been made in developing multi-view clustering field, especially 
multi-view subspace clustering [3]. Since multi-view subspace clustering can make it easier to 
deal with high-dimensional data by learning a unified representation for data on all views, it 
attracts much attention. For example, in [4], authors separate noise from each view and learn a 
shared low-rank transition probability matrix for multi-view spectral clustering. In [5], the 
low-rank sparse subspace clustering is extended to multi-view clustering, and the consistent 
clustering results are obtained. In addition, to make full use of the complementary information 
across views, work [6] uses the Hilbert-Schmidt independent criterion to explore the 
complementary information between each view and reduces redundancy in the 
self-representation of each view data. In [7], a consistency item is developed on the basis of [6], 
and the authors jointly optimize the diversity representation and spectral clustering. All these 
approaches aim to maximize the complementary information between views but ignore the 
differences between views. Therefore, reasonably assigning different weights to the views can 
make the clustering results more accurate. In [8], by considering the difference between the 
data on each view, authors propose a self-adaptive weighting method to assign different 
weight to each view. In [9], a multi-graph fusion algorithm of multi-view spectral clustering is 
proposed, where the self-adaptive weighting method is also adopted. 

As shown in the current works mentioned above, the complementary information between 
perspectives is captured straightly in the original data space. However, when the original data 
in each view is very diverse, the complementary information captured directly in the original 
data space may have a huge loss. Therefore, different to the previous works, inspired by the 
latest revelation that the data over all perspectives have a very similar or close spectral block 
structure, we are able to construct the complementary information in the spectral embedding 
domain. Besides, to better capture the global structure of the given data in subspace clustering, 
we propose a novel rank-norm approximation method. Experimental results demonstrate that 
the proposed method has better tradeoff between clustering effect and robustness. 

2. Preliminary 

2.1 Low-rank Sparse Representation 
The aim of low-rank representation (LRR) [10] is to find a low-rank representation matrix 

N N×∈C   for input data 1{ }D N
i i== ∈X x   where D and N represent the dimension of each 

data point and the number of data points, respectively. Mathematically, LRR problem is 
described as 

 ( )min , . . ,rank s t =
C

C X XC    (1)                                     

where ( )rank C  is the rank function. Since LRR is able to reconstruct the data space under the 
low-rank constraint, it is widely leveraged to capture the global structure of the given data. 
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Besides the low-rank constraint, to represent each data point by a small number of data 
points from the same subspace, the sparse constraint is also imposed on the matrix C. Thus, we 
have 

 ( ) ( )2
1 2 1

min , . . = ,
F

rank s t diagβ β− + +
C

X XC C C C 0  (2) 

where 1
⋅  is the tightest convex relaxation of the sparse norm 0 , the parameters 1β  and 2β  

are the balance parameters for the low-rank constraint and the sparse constraint, respectively. 
Here, ( )diag =C 0  represents that the diagonal vector of matrix C is a null vector, which is 
used for avoiding trivial solution. 

2.2 Multi-view Subspace Clustering 

Given a M-view dataset (1) (2) ( )={ , ,..., }MX X X X , where M is the number of views and ( )mX  
is the data on the m-th view, optimization problem (2) can be extended as 

 ( )

( ) ( ) ( ) ( )( ) ( )

( )( )

2

1 2 1
min ,

. . = , =1,2..., ,

m

m m m m m

F

m

rank

s t diag m M

β β− + +
C

X X C C C

C 0
 (3) 

where ( )m N N×∈C   is the self-representation matrix of the m-th view. Since there exists 
common information shared among all views [11], we need to find a unified representation 
matrix S across all views. Consequently, the optimization problem about the unified 
representation matrix N N×∈S   can be written as 

 ( ) ( )
2

1
min , . . = ,

M
m

m sFm
p s t rank N k

=

− −∑S
U S L   (4) 

where ( )mU  is the affinity matrix on the m-th view, expressed as ( ) ( ) ( )( ( ) ) / 2m m m T= +U C C , 
( 1/2) ( 1/2)

s N
− −= −L I D SD  is the Laplace matrix of matrix S with D being its degree matrix 

whose diagonal element ii ijj i≠
=∑D S , the constraint ( )=srank N k−L  is used to 

guarantee that S contains k connected components [12], mp  is the weight characterizing the 
importance of the m-th view. With regard to the weight of the m-th view, it should be inversely 
proportional to 

2( )m

F
−U S . Thus, we leverage the weighting scheme in [8], where mp  is set 

as 
2( )1/ (2 )m

F
−U S . 

Moreover, the optimization problem of multi-view subspace clustering under low-rank 
sparse constraint can be formulated as 

 

( )

( ) ( ) ( ) ( )( ){ ( )

( ) } ( )
( ) ( )( )

2

1 2 1, , 1

2

min

        ,

. . 0, = , ,

m

M
m m m m m

Fm

m T
m sF

m m T
ij k

rank

p Tr

s t diag

β β

η

=

− + +

+ − +

> =

∑
C S F

X X C C C

U S F L F

C C 0 F F I

 (5) 

where min ( )T
sTr

F
F L F  is equivalent to the constraint ( )srank N k= −L , η  represents its 
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corresponding balance parameter. When problem (5) is solved, the clustering results can be 
derived straightly without performing other clustering. 

3. The Proposed Approach 
In this section, we first propose a novel rank-norm approximation which provides better 
tradeoff between the accuracy and robustness for LRR. Secondly, we propose an alternative 
way to integrate the complementary information across different views. 

3.1 Novel Rank-norm Approximation 
As we know, LRR problem inevitably involves solving a rank minimization problem, which is 
known to be non-convex, thus it is a NP-hard issue. An alternative for it is to relax the rank 
function by the nuclear norm. Such that the relaxed problem is convex and can be readily 
solved by the soft-thresholding operation on singular values. However, the nuclear norm and 
its enhanced methods are the sum of singular values essentially, leading to a biased estimation 
for the rank function. Towards this issue, a series of non-convex relaxations are proposed, 
such as the Schatten-p norm [13] and the Gamma norm [14] proposed recently. The Gamma 
norm is an extension of the min-max concave plus function, which can be nearly unbiased to 
approximate the rank function [15]. To illustrate it with more details, we first assume that the 
singular value decomposition (SVD) of the matrix C can be written as T=C UΣV , where 

[ ]1 2, ,..., N=U u u u  and [ ]1 2, ,..., N=V v v v  denote two unitary matrices, respectively, and 

1 2( , ,..., )Ndiag σ σ σ=Σ  is a diagonal matrix with 1 2 ... 0Nσ σ σ≥ ≥ ≥ ≥ . Then, the 
Gamma norm of matrix C can be defined as  

 ( )
1

,
N

i
i

Jγγ
σ

=

=∑C  (6) 

where ( )iJγ σ  is a piecewise function written as 

 ( ) 20

, if
2

1 ,
, if

2

i
i

i
i

i i

xJ dx
σ

γ

γ σ γ
σ

σγ σ σ γ
γ

+

 ≥  = − =  
   − <



∫  (7) 

where [ ] ( )max ,0x x
+
= . As shown in (7), the Gamma norm is an extremely large or small 

concave function, so the approximation error would be very small. Besides, one may observe 
that, the parameter γ  decides on which piecewise of function would be exploited for ( )iJγ σ . 

However, the piecewise function in (7) is not continuous, and ( )iJγ σ  is heavily dependent on 
the parameter γ  [16]. Hence, the Gamma norm based approximation of the rank function is 
very sensitive to the parameter γ , which leads to a weak robustness to γ . 

To obtain a better tradeoff between the approximation error and robustness of the 
rank-norm approximation, we propose a novel rank-norm approximation method. In this 
method, by resorting to skills of the matrix transformation, small approximation error with 
good robustness can be achieved. Specifically, we first assume r and iσ  represent the rank 
and the i-th singular value of matrix C, respectively. Then, for the rank function of matrix C, 
we have 
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 ( ) ( )
2 2

2 2
1 1

. 
r r

i i

i ii i

rank r ε
σ σ ϕ
σ σ ε= =

= = ≥
+∑ ∑C C  (8) 

By observing the above equation, one may notice that the error between ( )rank C  and its 
lower bound ( )εϕ C  would be close to 0 when ε  approaches 0. Therefore, we can use ( )εϕ C  
to approximate the rank function in a very accurate way. On the other side, ( )εϕ C  would vary 
continuously with ε . And most importantly, when iσ  is much larger than ε , ( )εϕ C  barely 
changes with ε , thereby having an ideal robustness to ε . However, the rank function 
represented by ( )εϕ C  in (8) is an implicit function about the variable r, which would cause an 
intractable obstacle to solve the optimization problem. For it, we need to make a further 
transformation of ( )εϕ C , so as to obtain the explicit function about the rank r. To be specific, 
for ( )εϕ C , we have 

   

( )

2 2 1
1 1

2 2 1

2 1 2
1 1

2 1 2

( ) 0 0
0 0

( )

0 0

0 0 0 0 0 0
( ) 0 0 0 0

0 0 0 0
( )

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0

0 0

r r

r r

Tr

Tr

ε

σ σ ε

σ σ ε
ϕ

σ ε σ

σ ε σ

−

−

−

−

 +
 
 
 +

=  
 
 
  
 

 +
 
 
 +

=  
 
 
  
 

C

  

 

    

   

     

     

   

         

       

           



 

2 1 2
1 1

2 1 2

1

1

( ) 0 0 0 0
0 0 0 0

( )

0 0 0

0

0 0

0 0 0 0 0 0 0 0 0 0

r rTr

T

σ ε σ

σ ε σ

ε

ε

−

−

−

−

 
  
  
  
  
  
  
      
   +
   
   
   +
 =   
   
   
         

=

     

   

         

       

          







12 2( ( )) ( ( ))
,r

N r

diag diag
r

σ ε σ
ε

−

−

    +        

C I 0 C 0
0 I 0 0

  (9) 
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where 2( ( ))diag σ C  is a diagonal matrix with r squares of corresponding non-zero singular 
values of C. Then, based on the property of unitary matrix, ( )εϕ C  can be further written as 

 

( ) ( )
12

12

12

2

( ( ))

( ( ))
          

( ( ))
          

( ( ))

Tr

N r

T Tr

N r

T T T Tr

N r

r

N r

diag
Tr

diag
Tr

diag
Tr

diag
Tr

ε

σ ε
ϕ

ε

σ ε
ε

σ ε
ε

σ ε
ε

−

−

−

−

−

−

−

  + =     
  + =     
  + =     

 +
=  

 

C I 0
C Σ Σ

0 I

C I 0
UΣ Σ U

0 I

C I 0
UΣV V V VΣ U

0 I

C I 0
CV

0 I

1

T T

− 
 
 
 

V C

  (10) 

Then, by resorting to the property of the inversion of unitary matrix, ( )εϕ C  can be further 
written as 

 

( ) ( )

( ) ( )( )
( )( )( )

1

1

1

2
1

1 1

1

( ( ))

         

         

T Tr

N r

T T T
N

T TT
N

diag
Tr

Tr

Tr

ε

σ ε
ϕ

ε

ε

ε

− −−

−

−
−

−

−

  + =     

= +

= +

C I 0
C C V V C

0 I

C V Σ Σ I V C

C V Σ Σ I V C

  (11) 

Based on (11), the closed-form expression of ( )εϕ C  can be derived via the inverse process of 
SVD of C 

 

( ) ( )( )( )
( )( )( )

( )( )

1

1

1

          

          .

T

T T T
N

T T T
N

T T
N

Tr

Tr

Tr

εϕ ε

ε

ε

−

−

−

= +

= +

= +

C C V Σ Σ V I C

C V Σ Σ V I C

C C C I C

U U   (12) 

So far, we obtain the novel approximation for the rank function of matrix C in the closed-form 
way. 

3.2 The Integration of Multi-view Data on Spectral Structure 
In the data space, since there may exist dramatic divergence across each view, integrating the 
data from multiple views directly may cause a large information loss. However, work [17] 
reveals that the data from different views still have a very similar spectral block structure. 
Inspired by this discovery, we turn to establish a unified spectral block structure across all 
views in the spectral embedding space [18]. In this way, the issue caused by the obvious 
inconsistency of the data representation among all views can be avoided. Specifically, to 
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obtain the spectral block structure on each view, we incorporate spectral clustering into the 
optimization, and then perform an adaptive integration based on minimizing the difference 
between the spectral block structure on each view and the unified spectral block structure. To 
be specific, the objective function is formulated as 

 
( )

( )

2

3, 1
min ,

. . , , ,
m

M
T T

m m m m m mF
m

T
m m k s

p Tr

s t rank N k

β
=

− +

= = − =

∑S F
F F S F L F

F F I L S1 1
 (13) 

where ( 1/2) ( ) ( 1/2)m
m N m m

− −= −L I D U D  is the Laplace matrix of the affinity matrix ( )mU  with 

mD  being its degree matrix, N k
m

×∈F  denotes the spectral embedding matrix of the m-th 

view, T
m mF F  is the spectral block structure of the m-th view, S is the unified spectral structure 

across all views, 1 is a column vector that all elements are 1, 3β  denotes the balance parameter 
for the spectral embedding term. 

So far, the optimization problem (5) can be reformulated as 

 

( )

( ) ( ) ( ) ( )( ) ( ){ }
( ){ } ( )

( ) ( )( )

2

1 2 1, , , 1

2

3
1

min

          ,

   . . 0, , = , = .

m
m

M
m m m m m

Fm
M

T T T
m m m m m m sF

m

m m T T
ij m m k k

p Tr Tr

s t diag

εβ ϕ β

β η

=

=

− + +

+ − + +

> =

∑

∑

C S F F
X X C C C

F F S F L F F L F

C C 0 F F I F F I

 (14) 

4. Optimization Algorithms 
To solve the optimization problem (14), Alternating Direction Method of Multipliers (ADMM) 
is adopted here. 

4.1 Update ( )mC  

With fixed S, F and mF , the optimization problem can be reduced as 

( ) ( ) ( )2
1 2 31

min ,   . . ,T
m mF

Tr s t diagεβ ϕ β β− + + − =
C

X XC C C T CT C 0  (15) 

where (-1/2)
m m m=T D F  and the superscript of m is omitted for the sake of description 

convenience. Then, by introducing the auxiliary variables 3
1{ }i i=C  and W , (15) can be 

reformulated as 

 { }
( ) ( )

( )
3

1

2
1 1 2 2 3 31,

2 2 1 3

min ,

. . , , .
i i

T
m mF

Tr

s t diag

εβ ϕ β β
=

− + + −

= − = =

W C
X XW C C T C T

W C C W C W C
  (16) 

Moreover, its augmented Lagrangian is 
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{ } { }( ) ( ) ( )

( )( )
( )( )( )

23 3
1 1 2 2 3 31 1 1

2 2 2
2 2 1 3

1 2 2

, ,

                                    +
2

                                    +

                                 

T
i i m mi i F

F FF

T

L Tr

v diag

Tr diag

εβ ϕ β β
= =

= − + + −

+ − + − + −

+ −

W C Ω X XW C C T C T

W C C W C W C

Ω W C C

( )( ) ( )( )2 1 3 3   ,T TTr Tr+ − + −Ω W C Ω W C

(17) 

where v is the penalty parameter and 3
1{ }i i=Ω  are the Lagrange dual variables. 

4.1.1 Update W 

By setting the partial derivative of (17) with respect to W as 0, W can be updated directly as  

 ( ) ( )( )1

1 2 3 1 2 32 3 2 .T T
Nv v

−
= + + + + − − −W X X I X X C C C Ω Ω Ω  (18) 

4.1.2 Update 1C  

Based on the gradient descent method, 1C  can be updated iteratively as  

 ( ) ( )
1 1

1
1 1 ,tt η+ = − ∇C CC C  (19) 

where t represents the number of iterations, 
1

ηC  denotes the learning rate, and 
1

∇C  represents 

the gradient about 1C . However, to obtain
1

∇C , we need to calculate the partial derivative of 

(17) with respect to 1C . Firstly, we need to calculate the partial derivative of ( )1εϕ C  about 

1C . Specifically, based on the derivative rule about the trace of matrices, we have
 

 
( )( ) ( ) ( )( ) ( ) ( )( )1 1

1 1 1 1 1 1 1 1 12 .N
T T T

N Nεϕ ε ε
− − ∂ +∂ = − 
 

+C C C C C I C C CI C I  (20) 

In addition, we need to calculate the partial derivative of 2
1 F

−W C
 
with respect to 1C . To 

be specific, by resorting to the derivative rule about the squared Frobenius norm of the matrix, 
we can obtain 

 
( ) ( )2

1 1 1.2 2
F

∂ ∂ = −− +W C C W C
 

(21) 

Finally, we need to calculate the partial derivative of ( )( )2 1
TTr −Ω W C

 
about 1C . 

Specifically, based on the derivative rule about the trace of the matrix, we have 

 
( )( )( ) ( )2 1 1 2.TTr∂ − ∂ = −Ω W C C Ω   (22) 

In the end, based on (20), (21) and (22), the gradient 
1

∇C in (19) can be further written as 

 ( ) ( )( )1

1 1

1 2 1 1 1 1 1 1 12 .T T T
N N Nv v ε ε

− −
∇ = − − + + − +C C W Ω C C C I I C C C C I   (23) 
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4.1.3 Update 2C  

From [19] [20], the update rule of 2C  is  

 ( )2 2 2 ,diag′ ′= −C C C  (24) 
where

22 1( )/
v

vβπ′ = +C W Ω , and 
2
( )

v
βπ .  is the soft-thresholding operation applied 

entry-wise to 1( / )v+W Ω  [20]. 

4.1.4 Update 3C   

Based on the gradient descent method, 3C can be updated iteratively as  

 ( ) ( )
3 33 3

1t t η+ = − ∇C CC C ,  (25) 

where the gradient
3 3 3 3

T
m mv v β∇ = − − −C C W T T Ω .  

4.1.5 Update { }3

1i i=
Ω  

Given W and 3
1{ }i i=C , by the update rules for the dual variables in [5], dual variables 3

1{ }i i=Ω  
can be updated as 

 

                          

( )
( )
( )

1

1
2 2 1

1
3 3 3

1 1 2 ,

,

.

t t

t t

t t

v

v

v

+

+

+

= +

= +

= +

−

−

−

Ω Ω W C

Ω Ω W C

Ω Ω W C

                     (26) 

4.2 Update S 

With fixed ( )mC , F and mF , the optimization problem can be reduced as 

 { } ( )2

1
min , . . ,

M
T T

m m s kF
m

p Tr s tη
=

− + =∑S
F S F L F F F I  (27) 

where T
m m mF F F . By assuming the j-th entry of 1N

i
×∈q   and it can be set as 

( ) ( ) 2

2
,: ,:i j−F F , the optimization problem (27) with regard to the i-th column of S can be 

formulated as 

 
( )

( ) ( ) ( )2

2:, 1
min :, :, :, .

M
T

m m ii m
p i i iη

=

− +∑S
F S q S  (28) 

By taking the partial derivative about (,:)S  on (28) as 0, we can obtain 

 ( ) ( ):, :, .
2

i
m m mm m

i p i pη = − 
 
∑ ∑qS F  (29) 

Thus, S can be obtained by implementing (29) on the each column of it. 

4.3 Update F 

With fixed ( )mC , S and mF , the optimization problem can be reduced as 
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 ( )min , . . .T T
s kTr s t =

F
F L F F F I  (30) 

Obviously, the optimal solution of F is the matrix consisting of the eigenvectors of sL  
corresponding to the k smallest eigenvalues. 

4.4 Update mF  

With fixed ( )mC , S and F, the optimization problem can be reduced as 

 ( )2

3
1

min , . . .
m

M
T T T

m m m m m m m m kF
m

p Tr s tβ
=

− + =∑F
F F S F L F F F I  (31) 

Similarly, mF  can be updated iteratively as  

 ( ) ( )1 ,
m m

t t
m m η+ = − ∇F FF F  (32) 

where the gradient can be written as 

 ( ) ( )3
1
2 .

m

M
T T

m m m m m m m m
m

p β
=

∇ = − − + +∑F F S F SF L F L F  (33) 

So far, the update rules about all variables are provided above, these rules are then 
implemented repeatedly until the convergence or the achievement of maximum number of 
iteration. Furthermore, the update rules descripted above are summarized in the following 
algorithm. 

 
Algorithm description ADMM 
Input: { } { }3

1 1
, , , , , ,M

i mi i
p N k vβ η

= =
=X X  

Outputs: Assignment of the data points to k clusters 
1: Initialize: { } { }3 3

1 1
, , , 1, 2,...,i ii i

i M
= =
= = = =C 0 W 0 Ω 0  

2: while not converged do 
3:    for m=1 to M do 
4:      Fix others and update W  by solving (18) 
5:      Fix others and update 1C  by solving (19) 

6:      Fix others and update 2C  by solving (24) 
7:      Fix others and update 3C  by solving (25) 

8:      Fix others and update { }3

1i i=
Ω  by solving (26) 

9:      Fix others and update S  by solving (29) 
10:     Fix others and update F  by solving (30) 
11:     Fix others and update mF  by solving (32) 
12:    end for 
13:    Update v 
14:end while 

15: Combine ( ){ }
1

Mm

m=
C  by the method of spectral structure fusion 
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4.5 Complexity Analysis 

The main computation consumption of the algorithm is the update of ( )mC  and F. To be 
specific, the complexity of updating ( )mC  is 3( )O N , since the matrix inversion and 
multiplication. The complexity of updating F is 3( )O N , due to the implementation of SVD. 

5. Experiments 

5.1 Dataset Descriptions 
To evaluate the performance of the proposed approach, four real-world multi-view datasets are 
used, which are Reuters [21], 3-sources1, Prokaryotic [22] and UCI Digit2. Reuters is a 
dataset containing documents in 5 languages, where 600 documents with 6 clusters are 
randomly sampled for this experiment. 3-sources is a dataset of news articles collected from 
three online news sources, where 169 articles with 3 views and 6 clusters are adopted for this 
experiment. Prokaryotic is a dataset describing 551 prokaryotic species in a heterogeneous 
multi-view way including text and several genomic representations, where 551 samples with 3 
views and 4 clusters are adopted for this experiment. UCI Digit is a dataset consisting of 
handwritten digits (0-9), where 2000 examples with 3 views and 10 clusters are chosen for this 
experiment. 

5.2 Experiment Setting 
We evaluate clustering performance using five different metrics, such as recall, precision, 
F-score, normalized mutual information (NMI) and adjusted rand index (Adj-RI). For all these 
metrics, the higher value implies better performance. 

Besides, to evaluate the results of the experiments, we compare the proposed approach with 
the state-of-the-art solutions, such as Robust Multi-view Spectral Clustering (RMSC) [4], 
Convex Sparse Multi-view Spectral Clustering (CSMSC) [3], Pairwise Multi-view Low-rank 
Sparse Subspace Clustering (Pairwise MLRSSC) [5], Centroid-based Multi-view Low-rank 
Sparse Subspace Clustering (Centroid MLRSSC) [5] and Multi-graph Fusion for Multi-view 
Spectral Clustering (GFSC) [9]. Apart from that, we also verify the effectiveness of the 
proposed rank-norm approximation. For the sake of fairness, the same framework under 
different rank-norm approximations are compared. In other words, the framework of unifying 
multi-view data on the spectral structure under the nuclear norm (MVSS (Nuclear)), the 
Gamma norm (MVSS (Gamma)) and the proposed rank-norm approximation (MVSS (Ours)) 
are compared. Especially in MVSS (Nuclear), to compare with the cutting-edge method, the 
weighted nuclear norm [23], the latest nuclear norm based method, is exploited. 

Moreover, all parameters of existing approaches mentioned above are based on the 
respective parameter-searching strategy provided by the authors. Besides, all balance 
parameters in the proposed method are tuned from 3 3 2 2{50 ,10 , 50 ,  10 ,− − − − 1 150 ,10 ,1, 5,− −

10} . In addition, the parameter for the proposed rank-norm approximation ε  is tuned from 
3 3 2 2 1{50 ,10 , 50 ,10 , 50 }− − − − − , while the parameter for the Gamma norm γ  is varied from 

 
 
 
1 http://mlg.ucd.ie/datasets/3sources.html 
2 http://archive.ics.uci.edu/ml/datasets/Multiple+Features 
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350−  to 110−  with step 350− . Apart from that, the learning rate is set as 0.05, and the 
maximum number of iteration is 300. 

5.3 Experiment Results 
In Table 1, the clustering performance is compared sufficiently. As shown in Table 1, the 
performance of MVSS series (including MVSS (Nuclear), MVSS (Gamma), MVSS (Ours)) 
generally tend to outperform the performance of other algorithms. Hence, the effectiveness of 
the proposed integration of multi-view data on the spectral structure can be verified. 
 

Table 1. Clustering performance of different algorithms 
Datasets Method Precision Recall F-score NMI Adj-RI 

Returns 

RMSC 0.325 0.412 0.361 0.297 0.217 
CSMSC 0.327 0.420 0.365 0.295 0.220 

Pairwise MLRSSC 0.389 0.486 0.428 0.390 0.300 
Centroid MLRSSC 0.395 0.482 0.432 0.394 0.306 

GFSC 0.396 0.447 0.417 0.381 0.286 
MVSS (Nuclear) 0.398 0.471 0.431 0.389 0.310 
MVSS (Gamma) 0.412 0.477 0.442 0.404 0.315 

MVSS (Ours) 0.414 0.481 0.444 0.400 0.317 

3-sources 

RMSC 0.515 0.453 0.477 0.517 0.330 
CSMSC 0.518 0.464 0.482 0.518 0.335 

Pairwise MLRSSC 0.707 0.619 0.659 0.594 0.565 
Centroid MLRSSC 0.696 0.619 0.654 0.595 0.557 

GFSC 0.695 0.612 0.647 0.586 0.566 
MVSS (Nuclear) 0.757 0.675 0.713 0.617 0.585 
MVSS (Gamma) 0.767 0.679 0.720 0.623 0.594 

MVSS (Ours) 0.762 0.682 0.719 0.625 0.597 

Prokaryotic 

RMSC 
CSMSC 

Pairwise MLRSSC 
Centroid MLRSSC 

GFSC 
MVSS (Nuclear) 
MVSS (Gamma) 

MVSS (Ours) 

0.567 0.369 0.447 0.315 0.198 
0.565 0.391 0.462 0.269 0.206 
0.624 0.566 0.591 0.322 0.345 
0.530 0.756 0.574 0.202 0.258 
0.626 0.583 0.600 0.325 0.348 
0.631 0.635 0.632 0.328 0.351 
0.638 0.644 0.640 0.331 0.354 
0.633 0.653 0.642 0.333 0.357 

UCI digit 

RMSC 
CSMSC 

Pairwise MLRSSC 
Centroid MLRSSC 

GFSC 
MVSS (Nuclear) 
MVSS (Gamma) 

MVSS (Ours) 

0.728 0.757 0.742 0.778 0.713 
0.725 0.836 0.775 0.819 0.748 
0.809 0.854 0.830 0.851 0.810 
0.819 0.854 0.835 0.854 0.817 
0.821 0.851 0.831 0.862 0.812 
0.825 0.858 0.841 0.861 0.819 
0.831 0.863 0.846 0.867 0.828 
0.832 0.865 0.848 0.862 0.823 

 
Moreover, one may observe that, the performance of MVSS series is much better than that 

of others in 3-sources, while the performance of MVSS series is just slightly better than that of 
others in Reuters. For example, F-score of MVSS series is obviously higher than that of the 
other approaches in 3-sources, while F-score of MVSS series is slightly higher than that of the 
other approaches in Reuters. This is because that, the divergence across each view of data in 
3-sources is more obvious than that in Reuters. Besides, in the proposed MVSS series, one 
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may find that, the clustering performance of MVSS (Ours), which is based on the proposed 
rank-norm approximation, is almost the same as it of MVSS (Gamma). Hence, the proposed 
rank-norm approximation can achieve almost the same performance of the rank function 
approximation via the Gamma norm. Nevertheless, to achieve the same performance, the 
method based on the Gamma norm may require finer-grained grid search for the parameter γ , 
compared with the parameter ε  in the proposed rank-norm approximation. This is because 
that, better robustness can be derived by the proposed rank-norm approximation. 
 

Table 2. F-score under different f 

Datasets Approach F-score under different f 
f=0% f=5% f=10% f=15% 

Returns MVSS (Gamma) 0.442 0.423 0.408 0.387 
MVSS (Ours) 0.444 0.435 0.425 0.413 

3-sources MVSS (Gamma) 0.720 0.701 0.688 0.671 
MVSS (Ours) 0.719  0.710 0.701 0.692 

Prokaryotic MVSS (Gamma) 0.640  0.623 0.605 0.567 
MVSS (Ours) 0.642 0.635 0.621 0.606 

UCI digit MVSS (Gamma) 0.846 0.826 0.808 0.785 
MVSS (Ours) 0.848  0.839  0.828  0.818 

 
Table 3. NMI under different f 

Datasets Approach NMI under different f 
f=0% f=5% f=10% f=15% 

Returns MVSS (Gamma) 0.404 0.387 0.371 0.364 
MVSS (Ours) 0.400 0.395 0.388 0.379 

3-sources MVSS (Gamma) 0.623 0.612 0.601 0.588 
MVSS (Ours) 0.625 0.619 0.611 0.605 

Prokaryotic MVSS (Gamma) 0.331 0.318 0.305 0.292 
MVSS (Ours) 0.333 0.325 0.317 0.311 

UCI digit MVSS (Gamma) 0.867 0.858 0.841 0.832 
MVSS (Ours) 0.862 0.856 0.850 0.845 

 
Table 4. Adj-RI under different f 

Datasets Approach Adj-RI under different f 
f=0% f=5% f=10% f=15% 

Returns MVSS (Gamma) 0.315 0.304 0.293 0.284 
MVSS (Ours) 0.317 0.311 0.302 0.296 

3-sources MVSS (Gamma) 0.594 0.584 0.573 0.564 
MVSS (Ours) 0.597 0.592 0.586 0.579 

Prokaryotic MVSS (Gamma) 0.354 0.347 0.338 0.327 
MVSS (Ours) 0.357 0.350 0.344 0.338 

UCI digit MVSS (Gamma) 0.828 0.817 0.805 0.796 
MVSS (Ours) 0.823 0.816 0.811 0.804 

 
To further compare the robustness of the Gamma norm with that of the proposed method,  

Table 2-4 show how the change of the parameters of rank-norm approximation methods (i.e.,
ε  in the proposed rank-norm approximation or γ  in the Gamma norm) impacts on clustering 
performance. As the length limit, the comprehensive performance metric, F-score, NMI, 
Adj-RI, are used here only. In Table 2-4, the change of the parameters of rank-norm 
approximation methods is denoted by f which means the percentage change of the parameters 
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compared with the value chosen in Table 1. For example, 5%f =  means that, the parameters 
are increased and decreased by 5%  from the value chosen in Table 1, and the corresponding 
metric in Table 2-4 is the highest one among the two F-score values. It can be seen that, the 
impact of the variation of f on the performance of MVSS (Ours) is smaller than its counterpart 
on the performance of MVSS (Gamma). So, it can be seen that the Gamma norm is more 
sensitive to the parameter γ . Therefore, we can conclude that, the proposed rank-norm 
approximation can provide a better robustness than the Gamma norm. 
 
 

   
(a) (b)  

 
 

   
(c)                                                                    (d)  
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(e)                                                                       (f)  
 

Fig. 1. Illustration of the parameter sensitivity of the proposed method on UCI digit dataset 
(a) 1β  vs 2β . (b) 1β  vs 3β . (c) 2β  vs 3β . (d) 1β  vs η . (e) η  vs 2β . (f) η  vs 3β . 

 
The analysis of parameter sensitivity is shown in Fig. 1, where different combinations of 

two balance parameters chosen from [1, 2, 3, 4] are conducted the analysis and the F-score is 
taken as the performance metric. As shown in Fig. 1, under different parameter perturbations, 
the proposed method can obtain stable performance. In contrast, the performance of the 
proposed method is relatively sensitive to the parameter combination of η  and 2β . 

6. Conclusion 
In the multi-view clustering, to solve the performance deterioration problem caused by the 
huge diversity of the data representation in each view, we propose to construct the unified 
representation in the spectral embedding domain. In this way, the complementary information 
between perspectives can be unified very well. In addition, to better capture the global 
structure information of data in subspace clustering, we propose a novel low-rank constraint 
relaxation method via the tight lower bound on the rank function and develop an optimization 
algorithm to solve the multi-view clustering problem. Finally, experimental results 
demonstrate that the proposed method has better tradeoff between clustering effect and 
robustness. 
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