• Title/Summary/Keyword: Lithium Ion

Search Result 1,357, Processing Time 0.026 seconds

Triallyl Borate as an Effective Separator/Cathode Interphase Modifier for Lithium-ion Batteries

  • Ha Neul Kim;Hye Rim Lee;Taeeun Yim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.272-282
    • /
    • 2023
  • Ni-rich layered oxides cathode has recently gained attention as an advanced cathode material due to their applicable energy density. However, as the Ni component in the layered site is increased, the high reactivity of Ni4+ results in parasitic reaction associated with decomposing electrolyte, which leads to a rapid decreasing the lifespan of the cell. The electrolyte additive triallyl borate (TAB) improves interfacial stability, leading to a stable cathode-electrolyte interphase (CEI) layer on the LNCM83 cathode. A multi-functionalized TAB additive can produce a uniformly distributed CEI layer via electrochemical oxidation, which implies an increase in long-term cycling performance. After 100 cycles at elevated temperature, the cell tested by 0.75 TAB retained 88.3% of its retention ratio, whereas the cell performed by TAB-free electrolyte retained 64.1% of its retention. Once the TAB additive formed CEI layers on the LNCM83 cathode, it inhibited the decomposition of carbonate-based solvents species in addition to the dissolution of transition metal components from the cathode. The addition of TAB to LNCM83 cathode material is believed to be a promising way to increase the electrochemical performance.

Manufacture of Titania-silica Composite Anode Materials by Sol-gel Method (졸-겔법을 이용한 Titania-silica 혼합 음극활물질의 제조)

  • Bang, Jong-Min;Cho, Young-Im;Na, Byung-Ki
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.140-144
    • /
    • 2010
  • Titania-silica composite materials were obtained by sol-gel method from TiCl4 and TEOS precusors, and they were applied to anode materials of lithium ion battery. Uniformly distributed composite materials can be manufactured by sol-gel method. The composite materials were heat treated by microwave to obtain materials with new properties. The experimental variables were composition of the material, heat treatment temperature, and microwave exposure. The structure and surface properties of the materials were analyzed by XRD, SEM, and the electrochemical capacity was measured with charge/discharge cycler.

Development and Performance Validation of Underwater Propulsion Systems: A Case Study of Waterjet Diver Propulsion Device (수중 추진 시스템의 개발 및 성능 검증: 워터젯 다이버 추진체의 사례 연구)

  • Sang-Hee Lee;Do-Han Kim;Sung-Bo Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.5
    • /
    • pp.1303-1317
    • /
    • 2024
  • The development of high-performance underwater propulsion devices has gained importance with the expansion of recreational and industrial diving applications. This study aims to develop and validate a waterjet-type diver propulsion system capable of achieving a top speed of 3.8 knots and an operational time of over 120 minutes. Utilizing advanced modeling and simulation techniques, the design focuses on minimizing hydrodynamic resistance and optimizing buoyancy. Structural and fluid dynamic analyses were conducted to ensure the device's stability and performance under 20 atm pressure at a depth of 200 meters. The propulsion system employs a sensorless BLDC motor and a 36V lithium-ion battery pack to enhance efficiency and reliability. Field tests confirmed an average speed of 3.88 knots and a continuous operation time of 150 minutes, exceeding the initial targets. This research demonstrates significant advancements in diver propulsion technology, providing valuable insights for future underwater equipment development. The outcomes are poised to enhance the safety, efficiency, and usability of diver propulsion devices, with broader applications in marine research, environmental monitoring, and resource exploration.

Analysis of Heat Dissipation Performance Based on Fluid Flow Patterns in a Liquid-Cooled Lithium-Ion Battery Module (수냉식 리튬이온 배터리 모듈의 유체 유동 패턴에 따른 방열 성능 분석)

  • Yong-Hyeon Kim;Jeong-Ho Shin;Eun-Ju Kim;Young-Chul Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.875-882
    • /
    • 2024
  • As the demand for high-capacity and high-output lithium-ion battery systems grows, the heat energy density within the battery also increases. This excess heat can shorten battery life and cause safety concerns, making the development of effective Battery Thermal Management Systems (BTMS) essential. In this study, we analyzed the temperature distribution and cooling performance of battery cells by applying various thicknesses of Baffle structures in a water-cooling system. The results show that the Baffle configuration affects the average temperature and temperature uniformity of the cells, leading to an optimal design that maximizes cooling performance.

A Study on the Cobalt and Lithium Recovery from the Production Scraps of Lithium Secondary Battery by High Efficient and Eco-friendly Method (이차전지(二次電池) 제조공정(製造工程)스크랩으로부터 고효율(高效率) 親環境(친환경) 코발트(Co)와 리튬(Li)의 회수(回收)에 관(關)한 연구(硏究))

  • Lee, Jeong-Joo;Chung, Jin-Do
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.51-60
    • /
    • 2010
  • A study on the recovery of cobalt and lithium from Lithium Ion Battery(LIB) scraps has been carried out by a physical treatment - leaching - solvent extraction process. The cathode scraps of LIB in production were used as a material of this experiment. The best condition for recovering cobalt from the anode scraps was acquired in each process. The cathode scraps are dissolved in 2M sulfuric acid solution with hydrogen peroxide at $95^{\circ}C$, 700 rpm. The cobalt is concentrated from the leaching solution by means of a solvent extraction circuit with bis(2-ethylhexyl) phosphoric acid(D2EHPA) and PC88A in kerosene, and then cobalt and lithium are recovered as cobalt hydroxide and lithium carbonate by precipitation technology. The purity of cobalt oxide powder was over 99.98% and the average particle size after milling was about 10 lim. The over all recoveries are over 95% for cobalt and lithium. The pilot test of mechanical separation was carried out for the recovery of cobalt from the scraps. The $Co_3O_4$ powder was made by the heat treatment of $Co(OH)_2$ and the average particle size was about 10 ${\mu}m$ after grinding. The recovery was over 99% for cobalt and lithium each other and the purity of cobalt oxide was over 99.98%.

Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material (CNT를 첨가한 Silicon/Carbon 음극소재의 전기화학적 특성)

  • Jung, Min zy;Park, Ji Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.16-21
    • /
    • 2016
  • Silicon/Carbon/CNT composites as anode materials for lithium-ion batteries were synthesized to overcome the large volume change during lithium alloying-de alloying process and low electrical conductivity. Silicon/Carbon/CNT composites were prepared by the fabrication processes including the synthesis of SBA-15, magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling, carbonization of phenolic resin with CNT and HCl etching. The prepared Silicon/Carbon/CNT composites were analysed by XRD, SEM, BET and EDS. In this study, the electrochemical effect of CNT content to improve the capacity and cycle performance was investigated by charge/discharge, cycle, cyclic voltammetry and impedance tests. The coin cell using Silicon/Carbon/CNT composite (Si:CNT=93:7 in weight) in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC:DMC:EMC=1:1:1 vol%) has better capacity (1718 mAh/g) than those of other composition coin cells. The cycle performance of coin cell was improved as CNT content was increased. It is found that the coin cell (Si:CNT=89:11 in weight) has best capacity retension (83%) after 2nd cycle.

Qualitative Analysis of Patents Concerning Cathode Active Materials for Lithium-Ion Secondary Batteries Based on Layer Structure (층상구조기반의 리튬이차전지용 양극 활물질에 관한 특허정성분석)

  • Kim, Byung-Nam;Lim, Yong-Hwan;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.294-305
    • /
    • 2015
  • We have quantitatively analyzed 1,294 effective patents on "Quantitative Analysis of Patents Concerning Cathode Active Materials for Lithium-Ion Secondary Batteries Based on Layer Structure" from Korea, USA, Japan, Europe and PCT (WO). The importance of technological and patent values of the aforesaid patents were evaluated by the factors shown in Table 1, and 104 major and 20 core patents were selected in compliance with the evaluation from the patents. The technological flow chart over time regarding the selected major and core patents was prepared, and the applying time and development process of patents, as well as the position of core patents were established on the time scale investigated. Finally, the differentiation plans and patent avoidance strategies for the next technology development, in comparison with the technologies of patents already applied and registered, were suggested.

Effect of Manganese Vanadate Formed on the Surface of Spinel Lithium Manganese Oxide Cathode on High Temperature Cycle Life Performance

  • Kim, Jun-Il;Park, Sun-Min;Roh, Kwang Chul;Lee, Jae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2573-2576
    • /
    • 2013
  • Rate capability and cyclability of $LiMn_2O_4$ should be improved in order to use it as a cathode material of lithium-ion batteries for hybrid-electric-vehicles (HEV). To enhance the rate capability and cyclability of $LiMn_2O_4$, it was coated with $MnV_2O_6$ by a sol-gel method. A $V_2O_5$ sol was prepared by a melt-quenching method and the $LiMn_2O_4$ coated with the sol was heat-treated to obtain the $MnV_2O_6$ coating layer. Crystal structure and morphology of the samples were examined by X-ray diffraction, SEM and TEM. The electrochemical performances, including cyclability at $60^{\circ}C$, and rate capability of the bare and the coated $LiMn_2O_4$ were measured and compared. Overall, $MnV_2O_6$ coating on $LiMn_2O_4$ improves the cyclability at high temperature and rate capability at room temperature at the cost of discharge capacity. The improvement in cyclability at high temperature and the enhanced rate capability is believed to come from the reduced contact between the electrode, and electrolyte and higher electric conductivity of the coating layer. However, a dramatic decrease in discharge capacity would make it impractical to increase the coating amount above 3 wt %.

Tin Germanium Sulfide Nanoparticles for Enhanced Performance Lithium Secondary Batteries (고성능 리튬 이차 전지를 위한 황화 주석 저마늄 (SnxGe1-xS) 나노입자 연구)

  • Cha, E.H.;Kim, Y.W.;Lim, S.A.;Lim, J.W.
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • Composition-controlled ternary components chalcogenides germanium tin sulfide ($Sn_xGe_{1-x}S$) nanoparticles were synthesized by a novel gas-phase laser photolysis reaction of tetramethyl germanium, tetramethyl tin, and hydrogen sulfide mixture. Subsequent thermal annealing of as-grown amorphous nanoparticles produced the crystalline orthorhombic phase nanoparticles. All these composition-tuned nanoparticles showed excellent cycling performance of the lithium ion battery. The germanium sulfide nanoparticles exhibit a maximum capacity of 1200 mAh/g after 70 cycles. As the tin composition (x) increases, the capacity maintains better at the higher discharge/charge rate. This novel synthesis method of tin germanium sulfide nanoparticles is expected to contribute to expand their applications in high-performance energy conversion systems.

Crystal Structures, Electrical Conductivities and Electrochemical Properties of LiCo1-XMgxO2(x=0.03) for Secondary Lithium Ion Batteries (리튬 2차 전지용 LiCo1-XMgxO2(x=0.03)의 결정구조, 전기전도도 및 전기화학적 특성)

  • Kim, Ho-Jin;Chung, Uoo-Chang;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.602-606
    • /
    • 2005
  • [ $LiCoO_{2}$ ] is the most common cathode electrode materials in Lithium-ion batteries. $LiCo_{0.97}Mg_{0.03}O_2$ was synthesized by the solid-state reaction method. We investigated crystal structures, electrical conductivities and electrochemical properties. The crystal structure of $LiCo_{0.97}Mg_{0.03}O_2$ was analyzed by X-ray powder diffraction and Rietveld refinement. The material showed a single phase of a layered structure with the space group R-3m. The lattice parameter(a, c) of $LiCo_{0.97}Mg_{0.03}O_2$ was larger than that of $LiCoO_2$. The electrical conductivity of sintered samples was measured by the Van der Pauw method. The electrical conductivities of $LiCoO_2$ and $LiCo_{0.97}Mg_{0.03}O_2$ were $2.11{\times}10^{-4}\;S/cm$ and $2.41{\times}10^{-1}\;S/cm$ at room temperature, respectively. On the basis of the Hall effect analysis, the increase in electrical conductivities of $LiCo_{0.97}Mg_{0.03}O_2$ is believed due to the increased carrier concentrations, while the carrier mobility was almost invariant. The electrochemical performance was investigated by coin cell test. $LiCo_{0.97}Mg_{0.03}O_2$ showed improved cycling performance as compared with $LiCoO_2$.