DOI QR코드

DOI QR Code

Manufacture of Titania-silica Composite Anode Materials by Sol-gel Method

졸-겔법을 이용한 Titania-silica 혼합 음극활물질의 제조

  • Bang, Jong-Min (Department of Chemical Engineering, Chungbuk National University) ;
  • Cho, Young-Im (Department of Chemical Engineering, Chungbuk National University) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University)
  • 방종민 (충북대학교 화학공학과) ;
  • 조영임 (충북대학교 화학공학과) ;
  • 나병기 (충북대학교 화학공학과)
  • Received : 2010.05.10
  • Accepted : 2010.06.21
  • Published : 2010.06.30

Abstract

Titania-silica composite materials were obtained by sol-gel method from TiCl4 and TEOS precusors, and they were applied to anode materials of lithium ion battery. Uniformly distributed composite materials can be manufactured by sol-gel method. The composite materials were heat treated by microwave to obtain materials with new properties. The experimental variables were composition of the material, heat treatment temperature, and microwave exposure. The structure and surface properties of the materials were analyzed by XRD, SEM, and the electrochemical capacity was measured with charge/discharge cycler.

리튬이온전지의 음극활물질로서 titania-silica 혼합물을 얻기 위해 TiCl4와 TEOS를 전구체로 사용하여 졸-겔법을 이용해 합성하였다. 졸-겔법을 이용하여 혼합물을 합성할 경우에 균일한 분포를 갖는 화합물을 제조할 수 있다. 마이크로파를 이용하여 혼합물을 열처리하여 새로운 물성을 갖는 화합물의 제조를 시도하였다. 합성한 화합물의 물성을 측정하기 위하여 화합물의 조성, 열처리 온도 및 마이크로파 처리등을 실험변수로 사용하였다. 특성 분석방법으로는 합성물질의 구조적 특성과 입자의 표면분석을 하기 위해 XRD(X-ray diffraction)와 SEM (scanning electron microscopy)과 전지 충 방전기를 사용하여 충 방전에 따르는 전지의 용량변화를 관찰하였다.

Keywords

References

  1. Takehara, Z., and Kanamura, K., "Historical development of rechargeable lithium batteries in Japan," Electrochim. Acta, 38(9), 1169-1177 (1993). https://doi.org/10.1016/0013-4686(93)80047-4
  2. Dahn, J. R., von Sacken, U., Juzkow, M. W., and Al-Janaby, H, "Rechargeable $LiNiO_2$/Carbon Cells," J. Electrochem. Soc., 138(8), 2207-2211 (1991). https://doi.org/10.1149/1.2085950
  3. Delmans, C, and Saadoune, I., "Electrochemical and physical properties of the $Li_xNi_1$-$_yCo_yO_2$ phases," Solid State Ionics, 53, 370-375 (1992). https://doi.org/10.1016/0167-2738(92)90402-B
  4. Thackeray, M. M., Johnson, P. J., de Picciotto, L. A., Bruce, P. G., and Goodenough, J. B., "Electrochemical extraction of lithium from $LiMn_2O_4$," Mater. Res. Bull., 19, 179-187 (1984). https://doi.org/10.1016/0025-5408(84)90088-6
  5. Park, K. T., Park, C. H., and Son, Y. G., "Anode characteristics of tin oxide thin films according to various Si addition for lithium secondary microbattety," J. Korean Ceram. Soc., 40(1), 69-76 (2003). https://doi.org/10.4191/KCERS.2003.40.1.069
  6. Liu, W. R., Guo, Z. Z., Young, W. S., Shieh, D. T., Wu, H. H. C., Yang, M. H., and Wu, N. L., "Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive," J. Power Sources, 140(1), 139-144 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.032
  7. Wang, X., Wen, Z., Yang, X., and Lin, B., ''Nanosized tin-based composite derived by in situ mechanochemical reduction for lithium ion batteries," Solid State Ionics, 179(21), 1238-1241 (2008). https://doi.org/10.1016/j.ssi.2008.01.049
  8. Lee, J. H., Kim, W. J., Kim, J. Y., Lim, S. W., and Lee, S. M., "Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries," J. Power Sources, 176(1), 353-358 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.119
  9. Zhao, J., Wang, L., He, X., Wan, C., and Jiang, C., "A SiSnSb/ pyrolytic PAN composite anode for lithium-ion batteries," Electrochim. Acta, 53(24), 7048-7053 (2008). https://doi.org/10.1016/j.electacta.2008.05.040
  10. Chouvin, J., Branci, C., Sarradin, J., Olivier-Fourcade, J., Jumas, J. C., Simon, B., and Biensan, Ph., "Lithium intercalation in tin oxide," J. Power Sources, 81, 277-281 (1999). https://doi.org/10.1016/S0378-7753(99)00140-8
  11. Kim, H., Han, B., Choo, J., and Cho, J., "Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries," Angew. Chem. Int. Ed., 47(52), 10151-10154 (2008). https://doi.org/10.1002/anie.200804355
  12. Lee, H. Y., Kim, Y. L., Hong, M. K., and Lee, S. M., "Carbon-coated $Ni_{20}Si_{80}$ alloy-graphite composite as an anode material for lithium-ion batteries," J. Power Sources, 141(1), 159-162 (2005). https://doi.org/10.1016/j.jpowsour.2004.08.023
  13. Zhao, Y., Xu, L., Wang, Y., Gao, C., and Liu, D., "Preparation of Ti-Si mixed oxides by sol-gel one step hydrolysis," Catal. Today, 93, 583-588 (2004). https://doi.org/10.1016/j.cattod.2004.06.124
  14. Lee, Y. S., Lee, J. H., Kim, Y. W., Sun, Y. K., and Lee, S. M., "Rapidly solidified Ti-Si alloys/carbon composites as anode for Li-ion batteries," Electrochim. Acta, 52(4), 1523-1526 (2006). https://doi.org/10.1016/j.electacta.2006.02.052
  15. Lee., K. M, Lee, Y. S., Kim, Y. W., Sun, Y. K., and Lee, S. M., "Electrochemical characterization of Ti-Si and Ti-Si-AI alloy anodes for Li-ion batteries produced by mechanical ball milling," J. Alloy. Compd., 472(1), 461-465 (2008).
  16. Hu., Y. S., Kienle, L., Guo, Y. G. and Maier, J., "High Lithitum Electroactivity of Nanometer-Sized Rutile $TiO_2$," Adv. Mater., 18(11), 1421-1426 (2006). https://doi.org/10.1002/adma.200502723
  17. Oh, S. W., Park, S. H., and Sun, Y. K., "Hydrothermal synthesis of nano-sized anatase $TiO_2$ powders for lithium secondary anode materials," J. Power Sources, 161(2), 1314-1318 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.050
  18. Qiao, H., Xiao, L., and Zhang, L., "Phosphatization: A promising approach to enhance the performance of mesoporous $TiO_2$ anode for lithium ion batteries," Electrochem. Commun., 10(4), 616-620 (2008). https://doi.org/10.1016/j.elecom.2008.02.010