DOI QR코드

DOI QR Code

Tin Germanium Sulfide Nanoparticles for Enhanced Performance Lithium Secondary Batteries

고성능 리튬 이차 전지를 위한 황화 주석 저마늄 (SnxGe1-xS) 나노입자 연구

  • Cha, E.H. (Dept. of Pharmacy, Hoseo Univ.) ;
  • Kim, Y.W. (Graduated School of Green energy engineering, Hoseo Univ.) ;
  • Lim, S.A. (Graduated School of Green energy engineering, Hoseo Univ.) ;
  • Lim, J.W. (POSCO ICT, Strategic planning)
  • 차은희 (호서대학교 제약공학과) ;
  • 김영운 (호서대학교 그린에너지공학과 대학원) ;
  • 임수아 (호서대학교 그린에너지공학과 대학원) ;
  • 임재욱 (포스코 ICT 전략기획팀)
  • Received : 2015.02.09
  • Accepted : 2015.02.11
  • Published : 2015.02.28

Abstract

Composition-controlled ternary components chalcogenides germanium tin sulfide ($Sn_xGe_{1-x}S$) nanoparticles were synthesized by a novel gas-phase laser photolysis reaction of tetramethyl germanium, tetramethyl tin, and hydrogen sulfide mixture. Subsequent thermal annealing of as-grown amorphous nanoparticles produced the crystalline orthorhombic phase nanoparticles. All these composition-tuned nanoparticles showed excellent cycling performance of the lithium ion battery. The germanium sulfide nanoparticles exhibit a maximum capacity of 1200 mAh/g after 70 cycles. As the tin composition (x) increases, the capacity maintains better at the higher discharge/charge rate. This novel synthesis method of tin germanium sulfide nanoparticles is expected to contribute to expand their applications in high-performance energy conversion systems.

삼성분 칼코게나이드 화합물인 황화 주석 저마늄 ($Sn_xGe_{1-x}S$) 합금 나노입자를 메틸 주석 $(Sn(CH_3)_4$, tetramethyl tin, TMT) 메틸 저마늄 $(Ge(CH_3)_4$, tetramethyl germanium, TMG), 황화수소 ($H_2S$, hydrogen sulfide) 혼합 가스의 레이저 광분해 반응법으로 합성할 수 있으며, 이때 반응기 안의 가스 혼합비율에 따라 나노입자의 주석과 저마늄의 조성비를 조절할 수 있었다. 조성비를 가변시킨 나노입자는 모두 결정성을 갖게 만들 수 있었으며, 리튬 이온 전지의 음극소재로서 우수한 특성을 보여주었다. 조성비에 따라 특성을 조사결과, 황화저마늄은 70 사이클 후 최대 1200 mAh/g의 가장 높은 방전용량을 갖는 것과, 주석 성분 함량이 클수록 높은 충방전률에서 용량 유지가 더 잘 됨을 확인하였다. 이와 같은 우수한 효율의 황화물 합금 나노입자의 새로운 대량 합성법은 고성능 에너지 변환 소재 실용화에 기여할 것으로 예상된다.

Keywords

References

  1. D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, H. Kim, P. C. McIntyre, T. Krishnamohan and K. C. Saraswat, Appl. Phys. Lett. 83, 2432 (2003). https://doi.org/10.1063/1.1611644
  2. T. Hanrath and B. A. Korgel, J. Am. Chem. Soc.126, 15466 (2004). https://doi.org/10.1021/ja0465808
  3. X. Meng, R. Al-Salman, J. Zhao, N. Borissenko, Y. Li and F. Endres, Angew. Chem. Int. Ed. 48, 2703 (2009). https://doi.org/10.1002/anie.200805252
  4. B. Sun, G. Zou, X. Shen and X. Zhang, Appl. Phys. Lett. 94, 233504 (2009). https://doi.org/10.1063/1.3152997
  5. L. Cao, J. -S. Park, P. Fan, B. Clemens, M. L. Brongersma, Nano Lett. 10, 1229 (2010). https://doi.org/10.1021/nl9037278
  6. C. K. Chan, X. F. Zhang and Y. Cui, Nano Lett. 8, 307 (2008). https://doi.org/10.1021/nl0727157
  7. M. -H. Park, K. Kim, J. Kim and J. Cho, Adv. Mater. 22, 415 (2010). https://doi.org/10.1002/adma.200901846
  8. X. -L. Wang, W. -Q. Han, H. Chen, J. Bai, T. A. Tyson, X. -Q. Yu, X. -J. Wang and X. -Q. Yang, J. Am. Chem. Soc. 133, 20692 (2011). https://doi.org/10.1021/ja208880f
  9. G. Jo, I. Choi, H. Ahn and M. J. Park, Chem. Commun. 48, 3987 (2012). https://doi.org/10.1039/c2cc30294b
  10. D. -J. Xue, S. Xin, Y. Yan, K. -C. Jiang, Y. -X. Yin, Y.-G. Guo and L. -J. Wan, J. Am. Chem. Soc. 134, 2512 (2012). https://doi.org/10.1021/ja211266m
  11. K. H. Seng, M. H. Park, Z. P. Cuo, H. K. Liu and J. Cho, Angew. Chem. Int. Ed. 51, 5657 (2012). https://doi.org/10.1002/anie.201201488
  12. Y. Xiao, M. Cao, L. Ren and C. Hu, Nanoscale 4, 7469 (2012). https://doi.org/10.1039/c2nr31533e
  13. L. P. Tan, Z. Lu; H. T. Tan; J. Zhu; X. Rui; Q. Yan and H. H. Hng, J. Power Sources 206, 253 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.064
  14. F. -W. Yuan, H. -J. Yang and H. -Y. Tuan, ACS Nano 6, 9932 (2012). https://doi.org/10.1021/nn303519g
  15. M. -H. Park, Y. Cho, K. Kim, J. Kim, M. Liu and J. Cho, Angew. Chem. Int. Ed. 50, 9647 (2011). https://doi.org/10.1002/anie.201103062
  16. A. M. Chockla, M. G. Panthani, V. C. Holmberg, C. M. Hessel, D. K. Reid, T. D. Bogart, J. T. Harris, C. B. Mullins and B. A. Korgel, J. Phys. Chem. C 116, 11917 (2012). https://doi.org/10.1021/jp302344b
  17. N. G. Rudawski, B. L. Darby, B. R. Yates, K. S. Jones, R. G. Elliman and A. A. Volinsky, Appl. Phys. Lett. 100, 083111 (2012). https://doi.org/10.1063/1.3689781
  18. K. H. Seng, M. -H. Park, Z. P. Guo, H. K. Liu and J. Cho, Nano Lett. 13, 1230 (2013) https://doi.org/10.1021/nl304716e
  19. T. Song, H. Cheng, H. Choi, J. -H. Lee, H. Han, D. H. Lee, D. S. Yoo, M. -S. Kwon, J. -M. Choi, S. G. Doo, H. Chang, J. Xiao, Y. Huang, W. I. Park, Y. -C. Chung, H. Kim, J. A. Rogers and U. Paik, ACS Nano 6, 303 (2012). https://doi.org/10.1021/nn203572n
  20. J. Wang, N. Du, H. Zhang, J. Yu and D. Yang, J. Mater. Chem. 22, 1511 (2012). https://doi.org/10.1039/C1JM14430H
  21. J. Gu, S. M. Collins, A. I. Carim, X. Hao, B. M. Bartlett and S. Maldonado, Nano Lett. 12, 4617 (2012). https://doi.org/10.1021/nl301912f
  22. C. H. Kim, H. S. Im, Y. J. Cho, C. S. Jung, D. M. Jang, Y Myung, H. S. Kim, S. H. Back, Y. R Lim, C. -W. Lee, J. Park, M. S. Song and W.-I. Cho, J. Phys. Chem. C 116, 26190 (2012). https://doi.org/10.1021/jp308852g
  23. C. Yan, W. Xi, W. Si, J. Deng and O. G. Schmidt, Adv. Mater. 25, 539 (2012).
  24. E. Mullane, T. Kennedy, H. Geaney, C. Dickinson and K. M. Ryan, Chem. Mater. 25, 1816 (2013). https://doi.org/10.1021/cm400367v
  25. M. R. St. John, A. J. Furgala and A. F. Sammells, J. Electrochem. Soc. 129, 246 (1982). https://doi.org/10.1149/1.2123803
  26. J. Graetz, C. C. Ahn, R. Yazami and B. Fultz, J. Electrochem. Soc. 151, A698 (2004). https://doi.org/10.1149/1.1697412
  27. Y. Kim, H. Hwang, K. Lawler, S. W. Martin and J. Cho, Electrochim. Acta 53, 5058 (2008). https://doi.org/10.1016/j.electacta.2007.12.015
  28. Y.J. Cho, H. S. Im, Y. Myung, C. H. Kin, H. S. Kim, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, E. H. Cha, S. H. Choo, M. S. Song and W. I. Cho, Chem. Comm. 49, 4661 (2013) . https://doi.org/10.1039/c3cc41853g
  29. J. C. Cho, H. S. Im, H. S. Kim, Y. Myung, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, E. H. Cha, W. I. Cho, F. Shojaei and H. S. Kang, ACS Nano 7, 9075 (2013). https://doi.org/10.1021/nn403674z
  30. H. S. Im, J. C. Cho, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, F. Shojaei and H. S. Kang, ACS Nano 7, 11103 (2013). https://doi.org/10.1021/nn404837d
  31. C. S. Fuller and J. C. Severiens, Phys. Rev. 96, 21 (1954). https://doi.org/10.1103/PhysRev.96.21
  32. R. A. Huggins, J. Power Sources 51-82, 13 (1999).