A Study on the Cobalt and Lithium Recovery from the Production Scraps of Lithium Secondary Battery by High Efficient and Eco-friendly Method

이차전지(二次電池) 제조공정(製造工程)스크랩으로부터 고효율(高效率) 親環境(친환경) 코발트(Co)와 리튬(Li)의 회수(回收)에 관(關)한 연구(硏究)

  • Lee, Jeong-Joo (Dept. of Environmental Engineering, Hoseo University) ;
  • Chung, Jin-Do (Dept. of Environmental Engineering, Hoseo University)
  • Received : 2010.10.15
  • Accepted : 2010.11.30
  • Published : 2010.12.30

Abstract

A study on the recovery of cobalt and lithium from Lithium Ion Battery(LIB) scraps has been carried out by a physical treatment - leaching - solvent extraction process. The cathode scraps of LIB in production were used as a material of this experiment. The best condition for recovering cobalt from the anode scraps was acquired in each process. The cathode scraps are dissolved in 2M sulfuric acid solution with hydrogen peroxide at $95^{\circ}C$, 700 rpm. The cobalt is concentrated from the leaching solution by means of a solvent extraction circuit with bis(2-ethylhexyl) phosphoric acid(D2EHPA) and PC88A in kerosene, and then cobalt and lithium are recovered as cobalt hydroxide and lithium carbonate by precipitation technology. The purity of cobalt oxide powder was over 99.98% and the average particle size after milling was about 10 lim. The over all recoveries are over 95% for cobalt and lithium. The pilot test of mechanical separation was carried out for the recovery of cobalt from the scraps. The $Co_3O_4$ powder was made by the heat treatment of $Co(OH)_2$ and the average particle size was about 10 ${\mu}m$ after grinding. The recovery was over 99% for cobalt and lithium each other and the purity of cobalt oxide was over 99.98%.

리튬이차전지 양극스크랩으로부터 코발트와 리튬을 회수하기위해 물리적 전처리, 침출, 용매추출 및 회수실험을 행하였다. 실험재료로 제조공정에서 발생되는 코발트계 양극스크랩을 사용하여 단위공정별 최적조건을 구하였다. 물리적전처리 최적조건은 온도 $500{\sim}550^{\circ}C$, 파쇄날 회전속도 1000rpm이었으며, 침출 최적조건은 300rpm, 2M $H_2SO_4$, 2.5M $H_2O_2$, $95^{\circ}C$이었다. D2EHPA(bis(2-ethylhexyl) phosphoric acid) 와 PC88A를 각각 알루미늄과 코발트의 추출제로 사용하여 분리.정제하였으며, 코발트는 염기성시약을 사용하여 $Co(OH)_2$로, 리튬은 탄산나트륨 및 LiOH를 사용하여 탄산리튬($LiCO_3$)으로 회수하였다. $Co(OH)_2$는 열처리를 하여 삼산화코발트($Co_3O_4$)로 만들고 분쇄기를 사용하여 10 ${\mu}m$정도의 입자를 만들었다. 최적조건에서 코발트와 리튬 회수율은 99%이상, 리튬회수율은 99%이상이었으며, 삼산화코발트의 순도는 99.98%이상이었다.

Keywords

References

  1. 한국자원리싸이클링학회, 2009: "폐전지의 재활용", 2009 자원재활용백서, pp.241-261.
  2. Jiang P.H., Wang, C.G., He, F.Y.,Li, D.F., Yin, F., Jie, X., 2009: "Direct Atmospheric Oxidation Leaching of Spent Lithium-ion Batteries in Ammonia Solutions", The 10th Int. Sympo. on EARTH2009, Nov. 2-6.
  3. Daito, K.K., et al., 1993: JP 05,017,832.
  4. Bossert, A.J., et al., 1987: US 4,637,928.
  5. Kawakami, S., 1994: EP 613198.
  6. Sumitomo Metals Mining Co., 1996: JP 08,287,967.
  7. Keramchemies GMBH, 1995: EP 650,209.
  8. Okamoto, H., Lee, S.H., 2001 :"The current situation for recycling of lithium ion batteries", The 6th international symposium on East Asian Resources Recycling Technology, Oct. 23-25.
  9. Zhang, P., Yokoyama, T., Itabashi, O. Suzuki, T.M., Inoue, K., 1998: "Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries", Hydrometallurgy https://doi.org/10.1016/S0304-386X(97)00050-9
  10. Contestabile, M., Panero, S. Scrosati, b.: "A laboratoryscale lithium-ion battery recycling process", J. Power Sources 92 (1-2), 65-69, 2001.47(2-3), pp.259-271. https://doi.org/10.1016/S0378-7753(00)00523-1
  11. Catillo, S., Ansart, F., Laberty-Robert, C., Portal, J., 2002: "Advances in the recovering of spent lithium battery compounds", J. Power Sources 112(1), pp.247-254. https://doi.org/10.1016/S0378-7753(02)00361-0
  12. 손정수, 2003: "폐전지로부터 유기금속 회수 및 소재화 기술개발", 21C 프론티어연구개발사업 연구보고서, pp.154-201.
  13. 이철경, 김태현, 2000: "폐리튬이온전지로부터 분리한 양극활물질의 침출", 자원리싸이클링학회지, 9(4), pp.37-43.
  14. Lee C.K., Rhee, K. -I., 2003:"Reductive leaching of cathodic active materials from lithium ion battery wastes", Hydrometallurgy 68(1-3), pp.5-10. https://doi.org/10.1016/S0304-386X(02)00167-6
  15. Kim, D.S., Sohn, J.S., Lee, C.K., Lee, J.H., Han, K.S., Lee, Y.I, 2004: "Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium-ion rechargeable batteries", J. Power Sourccs 132(1-2), pp.145-149. https://doi.org/10.1016/j.jpowsour.2003.09.046
  16. Shin, S.M., Kim, N.H., Sohn, J.S., Yang, D.H., Kim, Y.H.,, 2005:"Development of a metal recovery process from Liion battery wastes", Hydrometallurgy 79, pp.172-181. https://doi.org/10.1016/j.hydromet.2005.06.004
  17. Komasawa, I.: "Separation and Recovery of Minor Compounds by Functional Chemical Reactions(in Japanese)", d. by S. Tone, 115-122, 1989.
  18. Ritcey, G.M., and Ashbrook, A.W., 1984: "Solvent Extraction Part 1 & 2, Process Metallurgyl" Elsevier, Amsterdam.
  19. Cole, P.M.: "The introduction of solvent extrtaction steps during ugprading of a cobalt refinery", Hydrometallurgy 64, 69-77, 2002. https://doi.org/10.1016/S0304-386X(02)00013-0
  20. Ritcey, G.M., Ashbrook, A.W., and Lucas, B.H., 1975: "Development of a solvent extraction process for the Separation of Cobalt from Nickel", C.I.M. Bulletin 68, 118-123.
  21. Jandova, J., Lisa, K., Vu, H., Vranka, F., 2004: "Separation of copper and cobalt-nickel sulphide concentrates during processing of manganese deep ocean nodules", Hydrometallurgy 77, pp.75-79.
  22. Zhang, W., Cheng, C.Y., 2007: Manganese metallurgy review. Part II. Hydrometallurgy 89, pp.160-177. https://doi.org/10.1016/j.hydromet.2007.08.009
  23. Sato, T., Nakamura, T., 1985: "Solvent extraction of divalent metals from sulfuric acid solutions by dialkylphosphoric acid", J. Min. Metall. Inst. Jpn. 101(1167) pp.309-312. https://doi.org/10.2473/shigentosozai1953.101.1167_309
  24. Sarangi, K., Reddy, B.R., Das, R.P., 1999: "Extraction studies of cobalt(II), nickel(II) from chloride solutions using Na-Cyanex 272", Hydrometallurgy 52, pp.253-265. https://doi.org/10.1016/S0304-386X(99)00025-0