• Title/Summary/Keyword: Lipschitz domain

Search Result 18, Processing Time 0.022 seconds

BI-LIPSCHITZ PROPERTY AND DISTORTION THEOREMS FOR PLANAR HARMONIC MAPPINGS WITH M-LINEARLY CONNECTED HOLOMORPHIC PART

  • Huang, Jie;Zhu, Jian-Feng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1419-1431
    • /
    • 2018
  • Let $f=h+{\bar{g}}$ be a harmonic mapping of the unit disk ${\mathbb{D}}$ with the holomorphic part h satisfying that h is injective and $h({\mathbb{D}})$ is an M-linearly connected domain. In this paper, we obtain the sufficient and necessary conditions for f to be bi-Lipschitz, which is in particular, quasiconformal. Moreover, some distortion theorems are also obtained.

REAL-VARIABLE CHARACTERIZATIONS OF VARIABLE HARDY SPACES ON LIPSCHITZ DOMAINS OF ℝn

  • Liu, Xiong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.745-765
    • /
    • 2021
  • Let Ω be a proper open subset of ℝn and p(·) : Ω → (0, ∞) be a variable exponent function satisfying the globally log-Hölder continuous condition. In this article, the author introduces the "geometrical" variable Hardy spaces Hp(·)r (Ω) and Hp(·)z (Ω) on Ω, and then obtains the grand maximal function characterizations of Hp(·)r (Ω) and Hp(·)z (Ω) when Ω is a strongly Lipschitz domain of ℝn. Moreover, the author further introduces the "geometrical" variable local Hardy spaces hp(·)r (Ω), and then establishes the atomic characterization of hp(·)r (Ω) when Ω is a bounded Lipschitz domain of ℝn.

REFLECTED DIFFUSION WITH JUMP AND OBLIQUE REFLECTION

  • Kwon, Young-Mee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.269-278
    • /
    • 1998
  • Let ($G,\;{\upsilon}$) be a bounded smooth domain and reflection vector field on $\partial$G, which points uniformly into G. Under the condition that locally for some coordinate system, ${\mid}{\upsilon^i}{\mid}\;i\;=\;1,{\cdot},{\cdot}$,d - 1, where is constant depending on the Lipschitz constant of G, we have tightness for reflected diffusion with jump on G with reflection $\upsilon$ depending only on c. From this, we obtain some properties of L-harmonic function where L is a sum of Laplacian and integro one.

  • PDF

REGULARITY OF SOLUTIONS OF 3D NAVIER-STOKES EQUATIONS IN A LIPSCHITZ DOMAIN FOR SMALL DATA

  • Jeong, Hyo Suk;Kim, Namkwon;Kwak, Minkyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.753-760
    • /
    • 2013
  • We consider the global existence of strong solutions of the 3D incompressible Navier-Stokes equations in a bounded Lipschitz do-main under Dirichlet boundary condition. We present by a very simple argument that a strong solution exists globally when the product of $L^2$ norms of the initial velocity and the gradient of the initial velocity and $L^{p,2}$, $p{\geq}4$ norm of the forcing function are small enough. Our condition is scale invariant and implies many typical known global existence results for small initial data including the sharp dependence of the bound on the volumn of the domain and viscosity. We also present a similar result in the whole domain with slightly stronger condition for the forcing.

LIPSCHITZ CLASS, GROWTH OF DERIVATIVE AND UNIFORMLY JOHN DOMAINS

  • Kim, Ki-Won
    • East Asian mathematical journal
    • /
    • v.19 no.2
    • /
    • pp.291-303
    • /
    • 2003
  • A result of Hardy and Littlewood relates Holder continuity of analytic functions in the unit disk with a bound on the derivative. Gehring and Martio extended this result to the class of uniform domains. In this paper we obtain a similar result to the class of uniformly John domains in terms of the inner diameter metric. We give several properties of a domain with the property. Also we show some results on the Holder continuity of conjugate harmonic functions in the above domains.

  • PDF

ON THE NEWTON-KANTOROVICH AND MIRANDA THEOREMS

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.24 no.3
    • /
    • pp.289-293
    • /
    • 2008
  • We recently showed in [5] a semilocal convergence theorem that guarantees convergence of Newton's method to a locally unique solution of a nonlinear equation under hypotheses weaker than those of the Newton-Kantorovich theorem [7]. Here, we first weaken Miranda's theorem [1], [9], [10], which is a generalization of the intermediate value theorem. Then, we show that operators satisfying the weakened Newton-Kantorovich conditions satisfy those of the weakened Miranda’s theorem.

  • PDF

EXTENDING THE APPLICABILITY OF INEXACT GAUSS-NEWTON METHOD FOR SOLVING UNDERDETERMINED NONLINEAR LEAST SQUARES PROBLEMS

  • Argyros, Ioannis Konstantinos;Silva, Gilson do Nascimento
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.311-327
    • /
    • 2019
  • The aim of this paper is to extend the applicability of Gauss-Newton method for solving underdetermined nonlinear least squares problems in cases not covered before. The novelty of the paper is the introduction of a restricted convergence domain. We find a more precise location where the Gauss-Newton iterates lie than in earlier studies. Consequently the Lipschitz constants are at least as small as the ones used before. This way and under the same computational cost, we extend the local as well the semilocal convergence of Gauss-Newton method. The new developmentes are obtained under the same computational cost as in earlier studies, since the new Lipschitz constants are special cases of the constants used before. Numerical examples further justify the theoretical results.