References
- S. Chen, S. Ponnusamy, and X. Wang, Stable geometric properties of pluriharmonic and biholomorphic mappings, and Landau-Bloch's theorem, Monatsh. Math. 177 (2015), no. 1, 33-51. https://doi.org/10.1007/s00605-014-0723-2
- S. Chen, S. Ponnusamy, and X. Wang, Linear connectivity, Schwarz-Pick lemma and univalency criteria for planar harmonic mapping, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 3, 297-308. https://doi.org/10.1007/s10114-016-4259-3
- M. Chuaqui and R. Hernandez, Univalent harmonic mappings and linearly connected domains, J. Math. Anal. Appl. 332 (2007), no. 2, 1189-1194. https://doi.org/10.1016/j.jmaa.2006.10.086
- J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25. https://doi.org/10.5186/aasfm.1984.0905
- L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137-152. https://doi.org/10.1007/BF02392821
- P. Duren, Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, 156, Cambridge University Press, Cambridge, 2004.
- R. Hernandez and M. J. Martin, Stable geometric properties of analytic and harmonic functions, Math. Proc. Cambridge Phil. Soc. 155 (2013), no. 2, 343-359. https://doi.org/10.1017/S0305004113000340
- D. Kalaj, Quasiconformal and harmonic mappings between Jordan domains, Math. Z. 260 (2008), no. 2, 237-252. https://doi.org/10.1007/s00209-007-0270-9
- H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), no. 10, 689-692. https://doi.org/10.1090/S0002-9904-1936-06397-4
- R. Nakki and B. Palka, Lipschitz conditions, b-arcwise connectedness and conformal mappings, J. Analyse Math. 42 (1982/83), 38-50.
- M. Pavlovic, Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 365-372.
- Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer-Verlag, Berlin, 1992.
- T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc. (2) 42 (1990), no. 2, 237-248.
- J.-F. Zhu, Some estimates for harmonic mappings with given boundary function, J. Math. Anal. Appl. 411 (2014), no. 2, 631-638. https://doi.org/10.1016/j.jmaa.2013.10.001