DOI QR코드

DOI QR Code

BI-LIPSCHITZ PROPERTY AND DISTORTION THEOREMS FOR PLANAR HARMONIC MAPPINGS WITH M-LINEARLY CONNECTED HOLOMORPHIC PART

  • Huang, Jie (School of Mathematical Sciences Huaqiao University) ;
  • Zhu, Jian-Feng (School of Mathematical Sciences Huaqiao University)
  • Received : 2017.09.23
  • Accepted : 2018.01.29
  • Published : 2018.09.30

Abstract

Let $f=h+{\bar{g}}$ be a harmonic mapping of the unit disk ${\mathbb{D}}$ with the holomorphic part h satisfying that h is injective and $h({\mathbb{D}})$ is an M-linearly connected domain. In this paper, we obtain the sufficient and necessary conditions for f to be bi-Lipschitz, which is in particular, quasiconformal. Moreover, some distortion theorems are also obtained.

Keywords

References

  1. S. Chen, S. Ponnusamy, and X. Wang, Stable geometric properties of pluriharmonic and biholomorphic mappings, and Landau-Bloch's theorem, Monatsh. Math. 177 (2015), no. 1, 33-51. https://doi.org/10.1007/s00605-014-0723-2
  2. S. Chen, S. Ponnusamy, and X. Wang, Linear connectivity, Schwarz-Pick lemma and univalency criteria for planar harmonic mapping, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 3, 297-308. https://doi.org/10.1007/s10114-016-4259-3
  3. M. Chuaqui and R. Hernandez, Univalent harmonic mappings and linearly connected domains, J. Math. Anal. Appl. 332 (2007), no. 2, 1189-1194. https://doi.org/10.1016/j.jmaa.2006.10.086
  4. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25. https://doi.org/10.5186/aasfm.1984.0905
  5. L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137-152. https://doi.org/10.1007/BF02392821
  6. P. Duren, Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, 156, Cambridge University Press, Cambridge, 2004.
  7. R. Hernandez and M. J. Martin, Stable geometric properties of analytic and harmonic functions, Math. Proc. Cambridge Phil. Soc. 155 (2013), no. 2, 343-359. https://doi.org/10.1017/S0305004113000340
  8. D. Kalaj, Quasiconformal and harmonic mappings between Jordan domains, Math. Z. 260 (2008), no. 2, 237-252. https://doi.org/10.1007/s00209-007-0270-9
  9. H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), no. 10, 689-692. https://doi.org/10.1090/S0002-9904-1936-06397-4
  10. R. Nakki and B. Palka, Lipschitz conditions, b-arcwise connectedness and conformal mappings, J. Analyse Math. 42 (1982/83), 38-50.
  11. M. Pavlovic, Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 365-372.
  12. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer-Verlag, Berlin, 1992.
  13. T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc. (2) 42 (1990), no. 2, 237-248.
  14. J.-F. Zhu, Some estimates for harmonic mappings with given boundary function, J. Math. Anal. Appl. 411 (2014), no. 2, 631-638. https://doi.org/10.1016/j.jmaa.2013.10.001