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LIPSCHITZ CLASS, GROWTH OF DERIVATIVE 
AND UNIFORMLY JOHN DOMAINS

Kiwon Kim

Abstract A result of Hardy and Littlewood relates Holder 
continuity of analytic functions m 나le unit disk with a bound 
on the derivative G아irmg and Martio extended this result 
to the class of uniform domains In this paper we obtain a 
similar result to the class of uniformly John domains m terms 
of the inner diameter metric We give several properties of a 
domain with the property Also we 안low some results on the 
Holder continuity of conjugate harmonic functions in the above 
domains

1. Introduction

Suppose that D is a domain in the complex plane C. Let r)= 
{w |s — 기 < r} for z E C and r > 0 and let B = 1B(0,1) be 나le 
unit disk in C. Let ^(7) denote the euclidean length of a curve 7, 
and distQ4,月)denote the euclidian distance from A to B for two 
sets A, B C C. Let dia(y) denote a diameter of 7 and let a € (0,1].

A domain P in C is said to be b-uniform if there exists a constant 
b > 1 such that each pair of points and 矣 in D can be joined by 
a rectifiable arc 7 in D with

£(了) < b\z± - 치
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and with

(1.1) 111111(^(7!),^(72)) V bdist(z0D)

for each z 6 7, where 71 and 72 are the components of 7 \ {z}.
A bounded domain D C C is said to be a b-John domain if there 

exist a point zq e D and a constant b > 1 such that each point 
zi E D can be joined to zq by an arc 7 in D satisfying

£(了(勺，z)) < 6dist(^,5-D)

for each z £ % where 了(孔 z) is the subarc of 7 with endpoints z” z. 
We call zq a John center^ b a John constant and 7 a b-John arc. We 
call a simply connected John domain, a John disk. A domain D in 
C is a b-John disk if and only if there is a constant b > 1 such that 
each pair of points 2足 花 E D can be joined by an arc y in D which 
satisfies (1.1) [NV]. Thus 난le class of bounded uniform domains is 
properly contained m the class of John domains. The converse is not 
true, for example, B \ [0,1).

We define the internal metric pD(糾 y) by

pD(*)y) = inf dia(7)

for x, y E D. Here infimum is taken over all open arcs which join x 
and y m D. Obviou이y \x ~ y\ < y).

We say that D is a b-umformly John domain if there exists a 
constant b > 1 such that each pair of points y E D can be joined 
by an arc 邛 U D which satisfies (1.1) and

(L2) ^(7) < bpD(x,y).

We call b a uniformly John constant and 7 a b-uniformly John arc.
A uniformly John domain. is a domain intermediate between a 

uniform domain and a John domain. By definition the class of uni­
form domains is properly contained in the class of uniformly John 
domains and also the class of uniformly John domains is properly 
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contained in the class of John domains. Balogh and Volberg [BV1, 
BV2] introduced a unifo호mly John domain in connection with con­
formal dynamics

Suppose that f is a real or complex valued function defined in D. 
We say that f is in the Lipschitz class. Zzpa(D), 0 < a < 1, if 나 
exists a constant m such that

(L3) 1/(^1) - /(弛)| < m\z! 一 씨a

for all zi and % in D)and we let ||/||Q denote the infimum of the 
numbers m for which (1.3) holds, f is said to belong to the local 
Lipschitz class、locLipa(D)^ if there is a constant m such that (1 3) 
holds whenever z” z2 lie in any open disk which is contained in D 
Let ||/||%“ denote the infimum of the numbers m such that (1.3) 
holds in this situation.

A domain D is called a Ltpa- extension domain if there exists a 
constant a depending on D and a such that f E locLipa{D) implies 
f G Lipa(D) with

Suppose that f is analytic in D. If f is in Lip(사))、then it is not 
difficult to show that

|f'(2시 < mdist(z, 3D'广 1

in D. Conversely, we have the following well known result of Hardy 
and Littlewood.

Theorem 1.1 ([HL]) If D is an open disk and f is analytic in 
D with

(1.4) l/'(2시 < mdist(z, dD)^1

for all z in D and for every a G (0,1]? then f € Lzpa (D) with
cm

《—， a
where c is an absolute constant.

The above theorem leads to the following notion, introduced in 
[GM1].
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Definition 1.2. A proper subdomain D in C is said to have 
the Hardy-Ltttlewood property of order a if there exists a constant 
c = c(D) such that whenever f is analytic in D with (1.4) for all 
z E D and fo호 some a E (0,1], then f C Lipa{D} with

a

Theorem 1.1 tells that each open disk has the Hardy-Littlewood 
property of order a. In [GM1, Corollary 2.2] it is proved more­
over that uniform domains have the Ha*dy-Lit引ewood property and 
therefore have the Hardy-Littlewood property of order a. Also it is 
showed that there exist domains having the Hardy-Littlewood prop­
erty of order a without being uniform [La].

Next m [AHHL] they give a characterization of a domain which 
has the Hardy-Littlewood property with order a as follows.

Theorem 1.3. ([AHHL]) A simply connected domain D in C 
has the Hardy-Littiewood property with order a if and only if D is 
a Lzp^-extension domain.

On the other hands, in. [L] it is showed that the Hardy-Littlewood 
property of order a does not hold for John. disks and that John disks 
hold analogues of the Hardy-Littlewood property which is explained 
in terms of the inner length metric.

Theorem 1.4. ([L]) If D is a b-John disk and f is analytic in D 
and f satisfies the condition (1.4) in D for some a € (0,1], then

cm
1/(^1) — /(^2)| M —Ar>(zi, 矣)져' a

for all Zx and 知 in D, where c is a constant which depends only on

入z2)二二 inf £(/?).

Here infimum is taken over all open arcs in D which join zi and
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Suppose that / is a real or complex valued function defined in 
D. We say that f is in the Lipschitz class with the inner diameter 
metric^ )0 < or < 1, if the호e exists a constant mi such that

(1・5) 一 f(Z2)\ < Z2)a

for all zi and z2 in J9, and we let ||/||匕 denote the infimum of the 
numbers mi for which (1.5) holds.

By definition it is clear that if / G L%pa{D\ 난lea f G L叩%(D).

Definition 1 5. A proper subdomain D in C is said to have the 
Hardy-Lzttlewood property with the inner diameter metric of order a. 
if there exists a constant c = c(D) such that whenever f is analytic 
and satisfies (1.4) in D for some a € (0,1], then f is in L理%(D) with

a
Also a proper subdomain D in C is said to have the Hardy- 

Littlewood property with the inner length metric of order a, if we re­
place pd(zj z2)by 癸)in definition of the Hardy-Littlewood 
property with the inner diameter metric of order a.

Clearly the Hardy-Littlewood property of order a implies the 
Hardy-Littlewood property with the inner diameter metric of or­
der a and it implies the Hardy-Littlewood property with the inne호 
length metric of order a.

In Section 2 we show a corresponding property to Theorem 1.4 for 
a uniformly John domain and give some properties of a domain which 
have the Hardy-Littlewood property with the inner diameter metric 
of order a Also m Section 3 we show some results on the Holder 
continuity of conjugate harmonic functions in domains introduced 
above.

In [K] we showed similar properties for a John disk and for a 
domain which have the Hardy-Littlewood property with the inner 
length metric of order a to the theorems in this paper.

Results in this paper and in [K] also show that a uniformly John 
domain is a domain. intermediate between a uniform domain and a 
John domain
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2. Uniformly John domains and the Hardy-L it tie wo o d 
property with the inner diameter metric of order a

Let
IWEI ]• 1/0+九)一 f(z)|= hm sup --------- -- ----------

I 씨->o I 시

for z E D,

Theorem 2.1. IfD is a b-uniformly John domain and f is dE讣m / 
and satisfies

(2.1) \df(z)\ < mdist(z,

in D for some a € (0,1], then

广m
1/(^1) ~ /(Z2)| < --- PD(Z.弛)气a

for all zi and z2 in D, where c is a constant which depends only on 
b.

Proof. Fix z2 G D and let 7 be a uniformly John arc joming 
in D. Next let s denote arclength measured along 7 from 21， 

let t = ^(7), let z(s) denote the corresponding representation lor 7 
and set g(s) = /(z(s))・ Then

|3g(s)| = limsup 어「? ~项이 < @f(z(s))|.

By (1.1)
min(5, t — s) < bdist(z(s), dD).

Thus by (2.1),

|3g(s)| < mdist(z(s),3Z))aT < (프프(으g一少广」
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for 0 < s < ^, 5 is absolutely continuous and

产 r I
|/(Z1) -/(矣)| = |g(。— g(0)| < / \dg(s)\ds < 2mb1~a / s^ds

JO Jo
2b1~am £ cm

J —L(E m -pD^,",

by (1.2) where c = 2b.
□

Corollary 2.2 If D is a b-uniformly John domain, then D have 
the Hardy-Littlewood property with the inner diameter metric of 
order a with

a
for c = c(6).

Now we show that the converse of Corollary 2.2 is not true.

Theorem 2.3. There exists a domain D mC having the Hardy- 
Littlewood property with the inner diamter metric of order a which 
is not a uniformly John domain

Proof. Let G3 — B(^,弓旨)where z3 = \z3 and

A~3 2~3 初
'히 = 1 2~ + °，= 板-_ A' J = 0,1,2,....

Next let P — IB U |JJ1O G3. Then we know that D is not a John disk 
[K, Theorem 2 1] and thus it is not uniformly John domain. But 
by [La, Corollary 7 11] D satisfies the Hardy-Littlewood property 
of order a and thus it has the Hardy-Littlewood property with the 
inner diameter metric of order a. □

Now let us recall the distance functions ka and 6a on a domain 
D、introduced in [KW]. For each a E (0,1] and for 勺，初 in D we 
define
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ka(zy^Z2)= inf / dist(x,dD)a~1ds^
7 Jy

where the infimum is taken over all rectifiable arcs 7 joining to 如 
in D. Furthermore,

毎(21〉类)=sup 1/(2；!)一 /(^2)|> 
f

where the supremum is taken over all analytic functions f on D 
satisfying

成(z)| Vdist(z0D)a-i

for all z G -D
The next theorem characterizes a domain which satisfies the Hardy- 

Littlewood property with the inner diameter metric of order a.

Theorem 2.4. A domain D in C has the Hardy-Littlewood prop­
erty with the inner diameter metric of order a if and only if there 
is a constant M < co such that for all 2如 2吃 € D there exists a 
rectifiable curve 7 joining z± to 弛 in D with

(2.2) / dist(z)3D广—'ds < AM愆衫)".

To prove Theorem 2.4 we need the following Lemma 2.5 which 
shows that 8a is connected to the metric ka.

Lemma 2.5. ([KW]) In a simply connected bounded domain D C 
C we have

(2.3) <ka < c血，

where a E (0,1] and 5 is an absolute constant.
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Proof of Theorem 2.4. Assume that D has the Hardy-Littlewood 
property with the inner diameter metric of order a. By the definition 
of(5aj the second inequality of (2.3) and

1/(^1) — /(^2)| < —一歸匚)(21, Z2广 
a

for f analytic in D and |/Z(z)j < dist(z, in D, we obtain

C]C( D)
< C 液〈Zi,%) = Ci SUp |/(Z1) 一/(炎)| < -----PD(Z\,衫)％

f a

Hence there exists a rectifiable curve 7 joining and 如，in D such 
that (2.2) is satisfied with M = 끄뜽끄L

Conversely, assume that there exists a constant M < 00 such that 
for all zi, ^2 e D there exists a rectifiable curve 7 joining z± to 理 in 
D with (2.2). Then by the first inequality of (2.3) for all f analytic 
in D with < dist(z,庭))。一】in _D, we obtain

1/(^1) - f(z2)\ < sup |/(Z1) — f(z2)\ < inf f dist(z, dD)a~xds 
f 7 ^7

< 足 Z2)a

□

Theorem 2.6. If a domain D in C is a Lzp^-extension domain, 
then it has the Hardy-Littlewood property with the inner diameter 
metric of order a.

Proof. In [GM2, Theorem 2.2] it is 안lowed that a domain D in C 
is a Lipextension domain if and only if there is a constant M < cq 
such that for all 2、衫 G D there exists a rectifiable curve 7 joining 
zi to 花 in D with (2.1) replaced pr)(zi, z^)a by |21 — 씨% Therefore 
we get the conclusion.

□
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Remark 2.7. By Theorem 2.3, Theorem 2.6 and definition of the 
Hardy-Littlewood property of order a, we observe that the classes of 
uniformly John domains, Lrpa-extension domain and domains which 
satisHes the Hardy-Littlewood property of order a are properly con­
tained in the class of domains which satisfies the Hardy-Littiewood 
property with the inner diameter metric of order a.

3. The Holder continuity of conjugate harmonic functions 
in domains

Lemma 3.1. ([GM1, Theorem 1.1]) Iff is harmonic and in Ltpa(D), 
then

(3.1) \df(z)\ < -WfWadis^dDy-1
7T

in D.

In [GM1] combining Lemma 3.1 and the fact that an uniform 
domain has the Hardy-Littlewood property yields the following ex­
tension of a result due to Privaloff on the continuity of conjugate 
harmonic functions in the unit disk.

Lemma 3.2. ([GM1, Corollary 2.2]) If D is b-uniform and if f is 
analytic with Re(f) in L%pa[D\ then f is in Lipa(D) with

(3-2) \\f\\a <-\\Re(f)\\a,a

where c is a constant which depends only on the constant b.

The above result does not hold for a uniformly John domain.

Theorem 3.3. There exists an analytic function f on a uniformly 
John domain such that Re(f) is in but f is not in Lzpa(D).

Proof. Let D = IB\(—1)이 and define a function / on 79 by 
六z) = Logz which is an analytic Mauch of logz. Then clearly 
Z? is a uniformly John domain. Also /(z) = Zog|기 + zArg(z) and 
Re(f) = Zog|히 is in Lipa(D)^ but Arg(z) is not in Lipa(D) [K]. □
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To obtain an analogous result of Lemma 3.2 for a uniformly John 
domain, we need a following analogous result of Lemma 3.1 for / € 
Lip^(D). The proof is similar to the proof of Lemma 3.1 [GM1, 
Theorem 1.1].

Theorem 3.4. If f is harmonic and m then for z e D

(3.3) |为伝)| v 当协|£dist(20£))aT.
7T

Proof. For z G C and 0 < r < oo let B(z, r) denote the open 
disk with center z and radius r. li z E D and r < dist(^, then 
B(z, r) C D and with the Poisson integral formula we obtain

心+龙)—&) = £ (宿仇£ - 1)g + re旳-/⑵伽 

= - r ”쯔勺一%」%(z + 枱°) - f(z))de 
7r Jq |rcz _ h\

for \h\ < r where h = |이e译. Thus by (1.5),

L"?"시 < 丄 广 gf+1이“ms"
I 이 兀 Jo (厂 T 이)2

Then since pd(z + 住时〉z) = r, we have
4
7T

Letting r —> dist(z, dD) and m —> ||/||^ then yields (3.3).
□

Theorem 3.5. If a domain D in C has the Hardy-Littiewood 
property with the inner diameter metric of order a and if f is analytic 
with -Re(/) E Lzp^(D), then f is in Lip^(D) with

(3.4) \M <
% a



302 K. KIM

Proof. Let u = Re(J、). Then u is harmonic in 2),

Au Ai * q
I广"시 = 毎⑵ 一 '质"시 - 이如(2시 - ""l£dist(z, 3D)aT

by the Cauchy-Riemann equations and Theorem 3.4. Then since 
D satisfies the Hardy-Littlewood property with the inner diameter 
metric of order a, we obtain that / is in Lip^(D) with (3.4). □

Now Corollary 2.2 and Theorem 3.5 give an analogous result of 
Lemma 3.2 for a uniformly John domain.

Corollary 3.6. If a domain D in C is a b-uniformly John do­
main and iff is analytic with Re(f) in Lip^(D)? then f is in L气p%(D) 
with (3.4) replaced c(D) by c(b).

REFERENCES

[AHH피 K. Astala, K Hag, P Hag and V Lappalainen, Lipschitz Classes and 
the Hardy-Littlewood Property^ Monatsh. Math 115 (1993), 267-279

[BV1] Z. Balogh and A. Volberg, Boundary Hamack principle for separated 
semihyperbolic repellers, harmonic measure applications, Rev. Mat. 
Iberoamericana 12 (1996), 299-336

[BV2] Z. Balogh and A. Volberg, Geometric locc血uniformly John 
property and separated semihyperbolic dynamics, Ark Mat. 34 (1996), 
21-49

[GM1] F. W Gehring and O Martio, Quasidzsks and the Hardy-Littlewood 
property^ Complex Variables Theory Appl. 2 (1983), 67-78.

[GM2] F W Gehring and O Martio, Lipschitz classes and quasiconformal 
mappings, Ann. Acad, Sci Fenn Math. 고0 (1985), 203-219.

[H피 G H Hardy and J E Littlewood, Some properties of fractional inte­
grals II, Math Z 34 (1932), 403-439.

[K] K. Kim, Hardy-Littlewood property with the inner length metric, Com- 
mun Korean Math Soc (to appear)

[KW] R Kaufman and J -M Wu, Distances and the Hardy-Littlewood prop­
erty, Complex Variables Theory Appl. 4 (1984), 1-5

[L] N. Langmeyer, The quasihyperbohc metric, growth and John domains^ 
Ann Acad Sci. Fenn. Math. 23 (1998), 205-224

[La] V Lappalainen, Lzpa-extension domains^ Ann. Acad Sci Fenn Math 
Diss 56 (1985).



LIPSCHITZ CLASS AND UNIFORMLY JOHN DOMAINS 303

[NV] R. Nakki and J. Vaisala, John disks^ Exposition. Math. 9 (1991), 3-43.

Department of Mathematics
Silla University
Busan 617-736, Korea
E-mail: kwkim@silla.ac kr

mailto:kwkim@silla.ac

