LIPSCHITZ CLASS, GROWTH OF DERIVATIVE AND UNIFORMLY JOHN DOMAINS

Kiwon Kim

Abstract

A result of Hardy and Littlewood relates Holder continuity of analytic functions in the unit disk with a bound on the derıvatıve Gehring and Marto extended this result to the class of uniform domans In this paper we obtain a simlar result to the class of uniformly John domains in terms of the inner diameter metric We give several properties of a doman with the property Also we show some results on the Holder continulty of conjugate harmonic functions in the above domans

1. Introduction

Suppose that D is a domain in the complex plane \mathbb{C}. Let $\mathbb{B}(z, r)=$ $\{w \quad|w-z|<r\}$ for $z \in \mathbb{C}$ and $r>0$ and let $\mathbb{B}=\mathbb{B}(0,1)$ be the unit disk in \mathbb{C}. Let $\ell(\gamma)$ denote the cuclidean length of a curve γ, and $\operatorname{dist}(A, B)$ denote the euclidian distance from A to B for two sets $A, B \subset \overline{\mathbb{C}}$. Let $\operatorname{dia}(\gamma)$ denote a diameter of γ and let $\alpha \in(0,1]$.

A domann D in \mathbb{C} is said to be b-unuform if there exists a constant $b \geq 1$ such that each pair of points z_{1} and z_{2} in D can be joined by a rectifiable arc γ in D with

$$
\ell(\gamma) \leq b\left|z_{1}-z_{2}\right|
$$

[^0]and with
\[

$$
\begin{equation*}
\min \left(\ell\left(\gamma_{1}\right), \ell\left(\gamma_{2}\right)\right) \leq b \operatorname{dist}(z, \partial D) \tag{1.1}
\end{equation*}
$$

\]

for each $z \in \gamma$, where γ_{1} and γ_{2} are the components of $\gamma \backslash\{z\}$.
A bounded domain $D \subset \mathbb{C}$ is said to be a b-John domain if there exist a point $z_{0} \in D$ and a constant $b \geq 1$ such that each point $z_{1} \in D$ can be joined to z_{0} by an arc γ in D satisfying

$$
\ell\left(\gamma\left(z_{1}, z\right)\right) \leq b \operatorname{dist}(z, \partial D)
$$

for each $z \in \gamma$, where $\gamma\left(z_{1}, z\right)$ is the subarc of γ with endpoints z_{1}, z. We call z_{0} a John center, b a John constant and γ a b-John arc. We call a simply connected John domain a John disk. A domain D in \mathbb{C} is a b-John disk if and only if there is a constant $b \geq 1$ such that each pair of points $z_{1}, z_{2} \in D$ can be joined by an arc γ in D which satisfies (1.1) [NV]. Thus the class of bounded uniform domains is properly contained in the class of John domains. The converse is not true, for example, $\mathbb{B} \backslash[0,1)$.

We define the internal metric $\rho_{D}(x, y)$ by

$$
\rho_{D}(x, y)=\inf \operatorname{dia}(\gamma)
$$

for $x, y \in D$. Here infimum is taken over all open arcs which join x and y in D. Obviously $|x-y| \leq \rho_{D}(x, y)$.

We say that D is a b-uniformly John domain if there exists a constant $b \geq 1$ such that each pair of points $x, y \in D$ can be joined by an arc $\gamma \subset D$ which satisfies (1.1) and

$$
\begin{equation*}
\ell(\gamma) \leq b \rho_{D}(x, y) \tag{1.2}
\end{equation*}
$$

We call b a uniformly John constant and γ a b-uniformly John arc.
A uniformly John domain is a domain intermediate between a uniform domain and a Johm domain. By definition the class of uniform domains is properly contained in the class of uniformly John domains and also the class of uniformly John domains is properly
contained in the class of John domains. Balogh and Volberg [BV1, BV2] introduced a uniformly John domain in connection with conformal dynamics

Suppose that f is a real or complex valued function defined in D. We say that f is in the Lipschitz class, Lip $(D), 0<\alpha \leq 1$, if there exists a constant m such that

$$
\begin{equation*}
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leq m\left|z_{1}-z_{2}\right|^{\alpha} \tag{1.3}
\end{equation*}
$$

for all z_{1} and z_{2} in D, and we let $\|f\|_{\alpha}$ denote the infimum of the numbers m for which (1.3) holds. f is said to belong to the local Lipschitz class, locLip (D), if there is a constant m such that (13) holds whenever z_{1}, z_{2} lie in any open disk which is contained in D Let $\|f\|_{\alpha}^{l o c}$ denote the infimum of the numbers m such that (1.3) holds in this situation.

A domain D is called a Lip p_{α}-extension domain it there exists a constant a depending on D and α such that $f \in \operatorname{locLap}(D)$ implies $f \in L i p_{\alpha}(D)$ with

$$
\|f\|_{\alpha} \leq a\|f\|_{\alpha}^{l o c}
$$

Suppose that f is analytrc in D. If f is in $L \imath p_{\alpha}(D)$, then it is not difficult to show that

$$
\left|f^{\prime}(z)\right| \leq \operatorname{mdist}(z, \partial D)^{\alpha-1}
$$

in D. Conversely, we have the following well known result of Hardy and Littlewood.

Theorem 1.1 ([HL]) If D is an open disk and f is analytic in D with

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq m \operatorname{dist}(z, \partial D)^{\alpha-1} \tag{1.4}
\end{equation*}
$$

for all z in D and for every $\alpha \in(0,1]$, then $f \in \operatorname{Lip}_{\alpha}(D)$ with

$$
\|f\|_{\alpha} \leq \frac{c m}{\alpha}
$$

where c is an absolute constant.
The above theorem leads to the following notion, introduced in [GM1].

Definition 1.2. A proper subdomain D in \mathbb{C} is said to have the Hardy-Luttlewood property of order α if there exists a constant $c=c(D)$ such that whenever f is analytic in D with (1.4) for all $z \in D$ and for some $\alpha \in(0,1]$, then $f \in \operatorname{Lip}_{\alpha}(D)$ with

$$
\|f\|_{\alpha} \leq \frac{c m}{\alpha}
$$

Theorem 1.1 tells that each open disk has the Hardy-Littlewood property of order α. In [GM1, Corollary 2.2] it is proved moreover that uniform domains have the Hardy-Littlewood property and therefore have the Hardy-Littlewood property of order α. Also it is showed that there exist domains having the Hardy-Littlewood property of order α without being uniform [La].

Next in [AHHL] they give a characterization of a domain which has the Hardy-Littlewood property with order α as follows.

Theorem 1.3. ([AHHL]) A simply connected doman D in \mathbb{C} has the Hardy-Littlewood property with order α if and only if D is a Lip p_{α}-extension doman.

On the other hands, in [L] it is showed that the Hardy-Littlewood property of order α does not hold for John disks and that John disks hold analogues of the Hardy-Littlewood property which is explaned in terms of the inner length metric.

Theorem 1.4. ([L]) If D is a b-John disk and f is analytic in D and f satisfies the condition (1.4) in D for some $\alpha \in(0,1]$, then

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leq \frac{c m}{\alpha} \lambda_{D}\left(z_{1}, z_{2}\right)^{\alpha}
$$

for all z_{1} and z_{2} in D, where c is a constant which depends only on b,

$$
\lambda_{D}\left(z_{1}, z_{2}\right)=\inf \ell(\beta) .
$$

Here infimum is taken over all open arcs β in D which join z_{1} and z_{2}.

Suppose that f is a real or complex valued function defined in D. We say that f is in the Lipschitz class with the znner diameter metric, $\operatorname{Lip}_{\alpha}^{d}(D), 0<\alpha \leq 1$, if there exists a constant m_{1} such that

$$
\begin{equation*}
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leq m_{1} \rho_{D}\left(z_{1}, z_{2}\right)^{\alpha} \tag{1.5}
\end{equation*}
$$

for all z_{1} and z_{2} in D, and we let $\|f\|_{\alpha}^{d}$ denote the infimum of the numbers m_{1} for which (1.5) holds.

By definition it is clear that if $f \in L i p_{\alpha}(D)$, then $f \in L i p_{\alpha}^{d}(D)$.
Definition 15 . A proper subdomain D in \mathbb{C} is said to have the Hardy-Littlewood property with the inner diameter metric of order α, if there exists a constant $c=c(D)$ such that whenever f is analytic and satısfies (1.4) in D for some $\alpha \in(0,1]$, then f is in $L \imath p_{\alpha}^{d}(D)$ with

$$
\|f\|_{\alpha}^{d} \leq \frac{c(D)}{\alpha} m
$$

Also a proper subdomain D in \mathbb{C} is sald to have the HardyLittlewood property with the inner length metric of order α, if we replace $\rho_{D}\left(z_{1}, z_{2}\right)$ by $\lambda_{D}\left(z_{1}, z_{2}\right)$ in definition of the Hardy-Littlewood property with the inner diameter metric of order α.

Clearly the Hardy-Littlewood property of order α implies the Hardy-Littlewood property with the mer diameter metric of order α and timples the Hardy-Littlewood property with the inner length metric of order α.

In Section 2 we show a corresponding property to Theorem 1.4 for a uniformly John domain and give some properties of a domain which have the Hardy-Littlewood property with the inner diameter metric of order α Also in Scction 3 we show some results on the Hölder continuity of comugate harmonic functions in domains introduced above.

In $[\mathrm{K}]$ we showed similar properties for a John disk and for a domain which have the Hardy-Littlewood property with the inner length metric of order α to the theorems in this paper.

Results in this paper and in $[\mathrm{K}]$ also show that a uniformly John domain is a domain intermediate between a uniform domain and a John domain
2. Uniformly John domains and the Hardy-Littlew od property with the inner diameter metric of order x

Let

$$
|\partial f(z)|=\lim \sup _{|h| \rightarrow 0} \frac{|f(z+h)-f(z)|}{|h|}
$$

for $z \in D$.
TheOrem 2.1. If D is a b-uniformly John domain and f is trifite and satisfies

$$
\begin{equation*}
|\partial f(z)| \leq m \operatorname{dist}(z, \partial D)^{\alpha-1} \tag{2.1}
\end{equation*}
$$

in D for some $\alpha \in(0,1]$, then

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leq \frac{c m}{\alpha} \rho_{D}\left(z_{1}, z_{2}\right)^{\alpha}
$$

for all z_{1} and z_{2} in D, where c is a constant which depends on/v on b.

Proof. Fix $z_{1}, z_{2} \in D$ and let γ be a uniformly John are funims z_{1}, z_{2} in D. Next let s denote arclength measured along γ from \dot{z}_{1}; let $\ell=\ell(\gamma)$, let $z(s)$ denote the corresponding representation lor γ and set $g(s)=f(z(s))$. Then

$$
|\partial g(s)|=\lim \sup _{h \rightarrow 0} \frac{|g(s+h)-g(s)|}{|h|} \leq|\partial f(z(s))| .
$$

By (1.1)

$$
\min (s, \ell-s) \leq b \operatorname{dist}(z(s), \partial D)
$$

Thus by (2.1),

$$
|\partial g(s)| \leq m \operatorname{dist}(z(s), \partial D)^{\alpha-1} \leq\left(\frac{\min (s, \ell-s)}{b}\right)^{\alpha \cdot 1}
$$

for $0<s<\ell, g$ is absolutely continuous and

$$
\begin{aligned}
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| & =|g(\ell)-g(0)| \leq \int_{0}^{\ell}|\partial g(s)| d s \leq 2 m b^{1-\alpha} \int_{0}^{\frac{\ell}{2}} s^{\alpha-1} d s \\
& \leq \frac{2 b^{1-\alpha} m}{\alpha}\left(\frac{\ell}{2}\right)^{\alpha} \leq \frac{c m}{\alpha} \rho_{D}\left(z_{1}, z_{2}\right)^{\alpha}
\end{aligned}
$$

by (1.2) where $c=2 b$.

Corollary 2.2 If D is a b-uniformly John domain, then D have the Hardy-Littlewood property with the inner diameter metric of order α with

$$
\|f\|_{\alpha}^{d} \leq \frac{c}{\alpha} m
$$

for $c=c(b)$.
Now we show that the converse of Corollary 2.2 is not true.
Theorem 2.3. There exists a domain $D \mathrm{~m} \mathbb{C}$ having the HardyLittlewood property with the inner damter metric of order α which is not a uniformly John domain

Proof. Let $G_{3}=\mathbb{B}\left(z_{3}, \frac{2^{-3}}{\sqrt{3}}\right)$ where $z_{3}=\left|z_{j}\right| e^{\imath \theta_{3}}$ and

$$
\left|z_{\jmath}\right|=1-\frac{4^{-\jmath}}{2}+\frac{2^{-\jmath}}{\sqrt{3}}, \quad \theta_{\jmath}=\frac{3 \pi}{2}\left(1-2^{-\jmath}\right), \quad \jmath=0,1,2, \ldots
$$

Next let $D=\mathbb{B} \cup \bigcup_{j=0}^{\infty} G_{j}$. Then we know that D is not a John disk $[\mathrm{K}$, Theorem 21] and thus it is not uniformly John domam. But by [La, Corollary 711] D satisfies the Hardy-Littlewood property of order α and thus it has the Hardy-Littlewood property with the inner diameter metric of order α.

Now let us recall the distance functions k_{α} and δ_{α} on a domain D, introduced in [KW]. For each $\alpha \in(0,1]$ and for z_{1}, z_{2} in D we define

$$
k_{\alpha}\left(z_{1}, z_{2}\right)=\inf _{\gamma} \int_{\gamma} \operatorname{dist}(x, \partial D)^{\alpha-1} d s
$$

where the infimum is taken over all rectifiable arcs γ joining z_{1} to z_{2} in D. Furthermore,

$$
\delta_{\alpha}\left(z_{1}, z_{2}\right)=\sup _{f}\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|
$$

where the supremum is taken over all analytic functions f on D satisfying

$$
\left|f^{\prime}(z)\right| \leq \operatorname{dist}(z, \partial D)^{\alpha-1}
$$

for all $z \in D$
The next theorem characterizes a domain which satisfies the HardyLittlewood property with the inner diameter metric of order α.

Theorem 2.4. A domain D in \mathbb{C} has the Hardy-Littlewood property with the inner diameter metric of order α if and only if there is a constant $M<\infty$ such that for all $z_{1}, z_{2} \in D$ there exists a rectifiable curve γ joining z_{1} to z_{2} in D with

$$
\begin{equation*}
\int_{\gamma} \operatorname{dist}(x, \partial D)^{\alpha-1} d s \leq M \rho_{D}\left(z_{1}, z_{2}\right)^{\alpha} \tag{2.2}
\end{equation*}
$$

To prove Theorem 2.4 we need the following Lemma 2.5 which shows that δ_{α} is connected to the metric k_{α}.

LEMMA 2.5. ([KW]) In a simply connected bounded domain $D \subset$ \mathbb{C} we have

$$
\begin{equation*}
\delta_{\alpha} \leq k_{\alpha} \leq c_{1} \delta_{\alpha} \tag{2.3}
\end{equation*}
$$

where $\alpha \in(0,1]$ and c_{1} is an absolute constant.

Proof of Theorem 2.4. Assume that D has the Hardy-Littlewood property with the inner diameter metric of order α. By the definition of δ_{α}, the second inequality of (2.3) and

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leq \frac{c(D)}{\alpha} \rho_{D}\left(z_{1}, z_{2}\right)^{\alpha}
$$

for f analytic in D and $\left|f^{\prime}(z)\right| \leq \operatorname{dist}(z, \partial D)^{\alpha-1}$ in D, we obtain

$$
k_{\alpha}\left(z_{1}, z_{2}\right) \leq c_{1} \delta_{\alpha}\left(z_{1}, z_{2}\right)=c_{1} \sup _{f}\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leq \frac{c_{1} c(D)}{\alpha} \rho_{D}\left(z_{1}, z_{2}\right)^{\alpha} .
$$

Hence there exists a rectifiable curve γ joining z_{1} and z_{2} in D such that (2.2) is satisfied with $M=\frac{2 c_{1} c(D)}{\alpha}$.

Conversely, assume that there exists a constant $M<\infty$ such that for all $z_{1}, z_{2} \in D$ there exists a rectifiable curve γ joining z_{1} to z_{2} in D with (2.2). Then by the first inequality of (2.3) for all f analytic in D with $\left|f^{\prime}(z)\right| \leq \operatorname{dist}(z, \partial D)^{\alpha-1}$ in D, we obtain

$$
\begin{aligned}
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| & \leq \sup _{f}\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leq \inf _{\gamma} \int_{\gamma} \operatorname{dist}(x, \partial D)^{\alpha-1} d s \\
& \leq M \rho_{D}\left(z_{1}, z_{2}\right)^{\alpha}
\end{aligned}
$$

Theorem 2.6. If a domain D in \mathbb{C} is a Lip p_{α}-extension domain, then it has the Hardy-Littlewood property with the inner diameter metric of order α.

Proof. In [GM2, Theorem 2.2] it is showed that a domain D in \mathbb{C} is a $L \imath p_{\alpha}$-extension domain if and only if there is a constant $M<\infty$ such that for all $z_{1}, z_{2} \in D$ there exists a rectifiable curve γ joining z_{1} to z_{2} in D with (2.1) replaced $\rho_{D}\left(z_{1}, z_{2}\right)^{\alpha}$ by $\left|z_{1}-z_{2}\right|^{\alpha}$. Therefore we get the conclusion.

Remark 2.7. By Theorem 2.3, Theorem 2.6 and definition of the Hardy-Littlewood property of order α, we observe that the classes of uniformly John domains, Lip α_{α}-extension domain and domains which satisfies the Hardy-Littlewood property of order α are properly contained in the class of domains which satisfies the Hardy-Littlewood property with the inner diameter metric of order α.

3. The Hölder continuity of conjugate harmonic functions

 in domainsLemma 3.1. ([GM1, Theorem 1.1]) If f is harmonic and in $L t p_{\alpha}(D)$, then

$$
\begin{equation*}
|\partial f(z)| \leq \frac{4}{\pi}\|f\|_{\alpha} \operatorname{dist}(z, \partial D)^{\alpha-i} \tag{3.1}
\end{equation*}
$$

in D.
In [GM1] combming Lemma 3.1 and the fact that an uniform domain has the Hardy-Littlewood property yields the following extension of a result due to Privaloff on the continuity of conjugate harmonic functions in the unit disk.

Lemma 3.2. ([GM1, Corollary 2.2]) If D is b-uniform and if f is analytic with $\operatorname{Re}(f)$ in $L a p_{\alpha}(D)$, then f is in $L \imath p_{\alpha}(D)$ with

$$
\begin{equation*}
\|f\|_{\alpha} \leq \frac{c}{\alpha}\|\operatorname{Re}(f)\|_{\alpha} \tag{3.2}
\end{equation*}
$$

where c is a constant which depends only on the constant b.
The above result does not hold for a uniformly John domain.
Theorem 3.3. There exists an analytic function f on a uniformly John domain such that $\operatorname{Re}(f)$ is in $L i p_{\alpha}(D)$, but f is not in $L \imath p_{\alpha}(D)$.

Proof. Let $D=\mathbb{B} \backslash(-1,0]$ and define a function f on D by $f(z)=\log z$ which is an analytic branch of logz. Then clearly D is a uniformly John doman. Also $f(z)=\log |z|+\imath \operatorname{Arg}(z)$ and $\operatorname{Re}(f)=\log |z|$ is in $L \imath p_{\alpha}(D)$, but $\operatorname{Arg}(z)$ is not in $\operatorname{Lip}_{\alpha}(D)[\mathrm{K}]$.

To obtain an analogous result of Lemma 3.2 for a uniformly John domain, we need a following analogous result of Lemma 3.1 for $f \in$ $L \imath p_{\alpha}^{d}(D)$. The proof is similar to the proof of Lemma 3.1 [GM1, Theorem 1.1].

Theorem 3.4. If f is harmonic and in $L \imath p_{\alpha}^{d}(D)$, then for $z \in D$

$$
\begin{equation*}
|\partial f(z)| \leq \frac{4}{\pi}\|f\|_{\alpha}^{d} \operatorname{dist}(z, \partial D)^{\alpha-1} . \tag{3.3}
\end{equation*}
$$

Proof. For $z \in \mathbb{C}$ and $0<r<\infty$ let $B(z, r)$ denote the open disk with center z and radius r. If $z \in D$ and $r<\operatorname{dist}(z, \partial D)$, then $\overline{\mathbb{B}}(z, r) \subset D$ and with the Polsson integral formula we obtain

$$
\begin{aligned}
f(z+h)-f(z) & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{r^{2}-|h|^{2}}{\left|r e^{2 \theta}-h\right|^{2}}-1\right)\left(f\left(z+r e^{\imath \theta}\right)-f(z)\right) d \theta \\
& =\frac{|h|}{\pi} \int_{0}^{2 \pi} \frac{r \cos (\theta-\phi)-|h|}{\left|r e^{\imath \theta}-h\right|^{2}}\left(f\left(z+r e^{\imath \theta}\right)-f(z)\right) d \theta
\end{aligned}
$$

for $|h|<r$ where $h=|h| e^{\imath \phi}$. Thus by (1.5),

$$
\frac{|f(z+h)-f(z)|}{|h|} \leq \frac{1}{\pi} \int_{0}^{2 \pi} \frac{r|\cos (\theta-\phi)|+|h|}{(r-|h|)^{2}} m \rho_{D}\left(z+r e^{\imath \theta}, z\right)^{\alpha} d \theta .
$$

Then since $\rho_{D}\left(z+r e^{2 \theta}, z\right)=r$, we have

$$
|\partial f(z)| \leq \frac{4}{\pi} m r^{\alpha-1}
$$

Letting $r \rightarrow \operatorname{dist}(z, \partial D)$ and $m \rightarrow\|f\|_{\alpha}^{d}$ then yields (3.3).

Theorem 3.5. If a domain D in \mathbb{C} has the Hardy-Littlewood property with the inner diameter metric of order α and if f is analytic with $\operatorname{Re}(f) \in L i p_{\alpha}^{d}(D)$, then f is in $L i p_{\alpha}^{d}(D)$ with

$$
\begin{equation*}
\|f\|_{\alpha}^{d} \leq \frac{8}{\pi} \frac{c(D)}{\alpha}\|\operatorname{Re}(f)\|_{\alpha}^{d} . \tag{3.4}
\end{equation*}
$$

Proof. Let $u=\operatorname{Re}(f)$. Then u is harmonic in D,

$$
\left|f^{\prime}(z)\right|=\left|\frac{\partial u}{\partial x}(z)-i \frac{\partial u}{\partial y}(z)\right| \leq 2|\partial u(z)| \leq \frac{8}{\pi}| | u \|_{\alpha}^{d} \operatorname{dist}(z, \partial D)^{\alpha-1}
$$

by the Cauchy-Riemann equations and Theorem 3.4. Then since D satisfies the Hardy-Littlewood property with the inner diameter metric of order α, we obtain that f is in $\operatorname{Lip}_{\alpha}^{d}(D)$ with (3.4).

Now Corollary 2.2 and Theorem 3.5 give an analogous result of Lemma 3.2 for a uniformly John domain.

Corollary 3.6. If a domain D in \mathbb{C} is a b-uniformly John domain and if f is analytic with $\operatorname{Re}(f)$ in $L i p_{\alpha}^{d}(D)$, then f is in $L i p_{\alpha}^{d}(D)$ with (3.4) replaced $c(D)$ by $c(b)$.

REFERENCES

[AHHL] K. Astala, K Hag, P Hag and V Lappalainen, Lapschitz Classes and the Hardy-Littlewood Property, Monatsh. Math 115 (1993), 267-279
[BV1] Z. Balogh and A. Volberg, Boundary Harnack pranciple for separated semihyperbolic repellers, harmonic measure apphcations, Rev. Mat. Iberoamericana 12 (1996), 299-336
[BV2] Z. Balogh and A. Volberg, Geometrvc localzzatzon, uniformly John property and separated semihyperbolic dynamics, Ark Mat. 34 (1996), 21-49
[GM1] F. W Gehring and O Martı, Quasıdısks and the Hardy-Littlewood property, Complex Variables Theory Appl. 2 (1983), 67-78.
[GM2] F W Gehring and O Martio, Lipschatz classes and quasiconformal mappings, Ann. Acad. Sci Fenn Math. 10 (1985), 203-219.
[HL] G H Hardy and J E Littlewood, Some properties of fractional integrals II, Math Z 34 (1932), 403-439.
[K] K. Kım, Hardy-Littlewood property with the inner length metric, Commun Korean Math Soc (to appear)
[KW] R Kaufman and J.M Wu, Distances and the Hardy-Lattlewood property, Complex Variables Theory Appl. 4 (1984), 1-5
[L] N. Langmeyer, The quasthyperbolic metric, growth and John domains, Ann Acad Sci. Fenn. Math. 23 (1998), 205-224
[La] V Lappalainen, Lıpo-extension domains, Ann. Acad Sci Fenn Math Diss 56 (1985).
[NV] R. Nakkı and J. Vassala, John disks, Exposition. Math. 9 (1991), 3-43.
Department of Mathematics
Silla University
Busan 617-736, Korea
E-mail: kwkim@silla.ac kr

[^0]: Received November 4, 2003
 2000 Mathematics Subject Classification 30C65, 30F45
 Key words and phrases the Lipschitz class, internal metric, growth of derivative and umformly John domans

