Fast Asian Math. J 19 (2003), No 2, pp 291-303

LIPSCHITZ CLASS, GROWTH OF DERIVATIVE
AND UNIFORMLY JOHN DOMAINS

KiwoN KM

ABSTRACT A result of Hardy and Littlewood relates Holder
contimmty of analytic functions 1n the unit disk with a bound
on the dervative Gehring and Martio extended this result
to the class of uniform domains In this paper we obtain a
similar result to the class of uniformly John domains in terms
of the inner diameter metric We give several properties of a
domain with the property Also we show some results on the
Holder continwity of conjugate harmonic functions in the above
domains

1. Introduction

Suppose that D is a domain in the complex plane C. Let B(z,7) =
{w jw-zl<r}forzeCandr >0andlet B=B(0,1) be the
unit disk in €. Let £(y) denote the cuchidean length of a curve 7,
and dist(A, B) denote the euclidian distance from A to B for two
sets A, B C C. Let dia(y) denote a diameter of v and let & € (0, 1.

A domam D in C is said to be b-uniform if there exists a constant
b > 1 such that each pair of points z; and z; in D can be joined by
a rectifiable arc v in D with

£(v) < blzy ~ 23]
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and with
(1.1) min(£(1), (7)) < bdist(z,8D)

for each z € «, where y; and 7, are the components of v\ {z}.

A bounded domain D C C is said to be a b-John domain if there
exist a point zp € D and a constant b > 1 such that each point
21 € D can be joined to 25 by an arc «y in D satisfying

£(y(z1, 2)) < bdist(z,0D)

for each z € vy, where y(z1, 2) is the subarc of y with endpoints z;, z.
We call 29 a John center, b a John constant and v a b-John arc. We
call a simply connected John domain a John disk. A domain D in
C is a b-John disk if and only if there is a constant b > 1 such that
each pair of points 2, 22 € D can be joined by an arc + in D which
satisfies (1.1) [NV]. Thus the class of bounded uniform domains is
properly contained m the class of John domains. The converse is not
true, for example, B\ [0, 1).
We define the internal metric pp(z,y) by

pp(z,y) = inf dia(y)

for z, y € D. Here infimum 15 taken over all open arcs which join z
and y m D. Obviously |z — y| < pp(z,y).

We say that D is a b-uniformly John domawn if there exists a
constant b > 1 such that each pair of points x, ¥ € D can be joined
by an arc y C D which satisfies (1.1) and

(1.2) £(v) < bpp(z,y).

We call b a uniformly John constant and «v a b-uniformly John arc.

A uniformly John domain is a domain intermediate between a
uniform domain and a John domain. By definition the class of uni-
form domains is properly contained in the class of uniformly John
domains and also the class of uniformly John domains is properly
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contained in the class of John domains. Balogh and Volberg [BV1,
BV2] introduced a uniformly John domain in connection with con-
formal dynamics

Suppose that f is a real or complex valued function defined in D.
We say that f 18 in the Lipschitz class, Lipa (D), 0 < @ < 1, if there
exists a constant m such that

(1.3) |f(z1) = flz2)] € mlzy — 22|®

for all 2; and z; in D, and we let {|f}]|o denote the infimum of the
numbers 7z for which (1.3} holds. f is said to belong to the local
Lipschitz class, locLip, (D), if there is a constant m such that (1 3)
holds whenever z;, 22 lie in any open disk which is contained in D
Let [|f]|%¢ denote the infimum of the numbers m such that (1.3)
holds in this situation.

A domain D is called a Lip,-eztension domaswn if there exists a
constant ¢ depending on D and « such that f € locLip, (D) implies
f € Lip,(D) with

1 £llee < all FIGE.
Suppose that f is analytic in D. If f is in Lepe (D), then it is not
difficult to show that
|f(2)] < mdist(z,8D)*"*

in D. Conversely, we have the following well known result of Hardy
and Littlewood.

THEOREM 1.1 ([HL]) If D is an open disk and f is analytic in
D with

(1.4) | F(2)] < mdist(z,0D)*"!
for all z in D and for every a € (0,1}, then f € Lip,(D) with
cm
< 0
flle < 2,

where ¢ is an absolute constant.

The above theorem leads to the following notion, introduced in

[GM1].
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DEFINITION 1.2. A proper subdomain D in C is said to have
the Hardy-Litlewood property of order o if there exists a constant
¢ = ¢{D) such that whenever f is analytic in D with (1.4) for all
z € D and for some a € (0, 1], then f € Lip,(D) with

cm
i lla € —

. .

Theorem 1.1 tells that each open disk has the Hardy-Littlewood
property of order . In [GM1, Corollary 2.2] it is proved more-
over that uniform domains have the Hardy-Littlewood property and
thercfore have the Hardy-Littlewood property of order . Also it is
showed that there exist domains having the Hardy-Littlewood prop-
erty of order a without being uniform [La].

Next 1n {AHHL] they give a characterization of a domain which
has the Hardy-Littlewood property with order « as follows.

THEOREM 1.3. ([AHHL]) A simply connected domam D in C
has the Hardy-Littlewood property with order « if and only if D is
a Lip,-extension domain.

On the other hands, in [L] it is showed that the Hardy-Littlewood
property of order o does not hold for John disks and that John disks
hold analogues of the Hardy-Littlewood property which is explained
in terms of the inner length metric.

THEOREM 1.4. ([L]) If D is a b-John disk and f is analytic in D
and f satisfies the condition (1.4) in D for some « € {0, 1], then

|f(e1) = F(z2)| € Z2An(a, 22)°,

for all z; and zy in D, where ¢ 1s a constant which depends only on
b,
AD(zl-‘ Z2) = 1nf€(,5’)

Here infimum is taken over all open arcs § m D which join z; and
Z9.
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Suppose that f is a real or complex valued function defined in
D. We say that f is in the Lipschitz class with the wmner diameter
metric, Lip3 (D), 0 < a < 1, if there exists a constant m; such that

(1.5) If(21) — f(z2)l < mupp(z1, 22)”

for all z; and z» in D, and we let [|f]|2 denote the infimum of the
numbers m, for which (1.5) holds.
By definition 1t is clear that if f € Lipo (D), then f € Lipd (D).

DEFINITION 1 5. A proper subdomain D in C is said to have the
Hurdy-Lattlewood property with the inner diameter metric of order o,
if there exists a constant ¢ = ¢(D) such that whenever f 15 analytic
and satisfies (1.4) in D for some « € (0, 1], then f is in Lipd (D) with

a . D)
I£1E < E=m,

Also a proper subdomain D in C 1s said to have the Hardy-
Lattlewood property with the inner length metric of order o, if we re-
place pp(z1, 22} by Ap(21, 29) in definition of the Hardy-Littlewood
property with the inner diameter metric of order a.

Clearly the Hardy-Littlewood property of order « implies the
Hardy-Littlewood property with the mner diameter metric of or-
der o and 1t imphes the Hardy-Littlewood property with the inner
length metric of order «.

In Section 2 we show a corresponding property to Theorem 1.4 for
a uniformly John domain and give some properties of a domain which
have the Hardy-Lattlewood property with the inner diameter metric
of order @ Also mn Scction 3 we show some results on the Holder
continuity of conjugate harmonic functions in domains introduced
above.

In [K] we showed similar properties for a John disk and for a
domain which have the Hardy-Littlewood property with the inner
length metric of order o to the theorems in this paper.

Results in this paper and in [K] also show that a uniformly John
domain is a domain intermediate between a uniform domain and a
John domain
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2. Uniformly John domains and the Hardy-Littiew.od
property with the inner diameter metric of order «

Let

i s HEER) — £
18f(2)| =1 !h]-E)O kh’l

for z € D.

THEOREM 2.1. IfD is a b-uniformly John domain and [ is defined
and satisfies

(2.1) |8f(2)| < mdist(z,0D)* !

in D for some a € (0,1}, then

F(z) = flea)l < Topplen, )

for all z; and 29 in D, where ¢ is a constant which depends onlv on
b.

Proof. Fix z1,2 € D and let 7y be a uniformly John arc jeming
21,29 1n D. Next let s denote arclength measured along v from 2y,
let £ = £(7y), let 2(s) denote the corresponding representation lor vy
and set g(s) = f(z(s)). Then

|g(8 + h] "' 9(3)1 < |8f(z(s))|
i - '

|0g(s)] = lim sup
h—0
By (1.1)
min(s, £ - s) < bdist(z(s), D).
Thus by (2.1),

min(s, £~ s))a o

|8g(s)| < mdist(z(s),dD)*~* < ( 3
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for 0 < s < ¢, g is absolutely continuous and

¢

£ 2
U@ﬂ—ﬂ@ﬂzb@%@@NSAI%@Mﬁs%w““L 57 s

2bl—om ¢ cm
K e (YY @
< = (2) < pp(z1, 22)%,
by (1.2) where ¢ = 2b.
t

COROLLARY 2.2 If D 1s a b-uniformly John domain, then D have
the Hardy-Littlewood property with the inner diameter metric of
order ¢ with

d C
1711 < Sm
for ¢ = c{b).
Now we show that the converse of Corollary 2.2 is not true.

THEOREM 2.3. There exists a domain D m C having the Hardy-
Littlewood property with the inner diamter metric of order o which
is not a uniformly John domain

Proof. Let G, = B(z,, %) where 2, = |z,]e*®s and

4=1 27 3m _
Izi’lzlm—'g__i_\_/-g) 8.?::'2_(1_2 J)) .72031121""

Next let D = BU{J;Z, G,. Then we know that D is not a John disk
(K, Theorem 2 1] and thus it is not uniformly John domamn. But
by {La, Corollary 7 11] D satisfies the Hardy-Littlewood property
of order & and thus it has the Hardy-Littlewood property with the
inner diameter metric of order «. O

Now let us recall the distance functions &, and é, on a domain
D, introduced in [KW]. For each a € (0,1} and for z;, z3 in D we
define
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ko{z1,22) :inf/dist(x, aD)*"lds,
Ty

where the infimum is taken over all rectifiable arcs v joining z; to 29
in D. Furthermore,

8al21,22) = SI}P |f{z1) — f(22)],

where the supremum is taken over all analytic functions f on D
satisfying
|f(2)] < dist(z,8D)*"*

for all z € D
The next theorem characterizes a domain which satisfies the Hardy-
Littlewood property with the inner diameter metric of order a.

THEOREM 2.4. A domain D in C has the Hardy-Littlewood prop-
erty with the inner diameter metric of order o if and only if there
is a constant M < oo such that for all zy, zg € D there exists a
rectifiable curve -y joining z, to z3 in D with

(2.2) /dist(:c, BD)Q_lds < Mpp(zi, z2)%.
¥

To prove Theorem 2.4 we need the following Lemma 2.5 which
shows that J, is connected to the metric k,.

LEMMA 2.5. ([KW]) In a simply connected bounded domain D C
C we have

(2.3) 0o < ko < c1ba,

where o € (0,1] and ¢, is an absolute constant.
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Proof of Theorem 2.4. Assume that D has the Hardy-Littlewood

property with the inner diameter metric of order . By the definition
of 84, the second inequality of (2.3} and

D
1)~ £ < 2o tay, za)
for f analytic in D and |f'(2)] < dist(2,8D)*" ! in D, we obtain

clc(D)
(84

ka{z1, 22) < c18a(z1,22) =3 Sl}P|f(zl)—f(Z2)i < pp(z1, 22)%.

Hence there exists a rectifiable curve v joining zy and z; in D such
that (2.2) is satisfied with M = -2%@

Conversely, assume that there exists a constant M < oo such that
for all 21, 2z € D there exists a rectifiable curve 7 joining z; to z3 In
D with (2.2). Then by the first inequality of (2.3} for all f analytic
in D with [f(2)| < dist(z,8D)*~! in D, we obtain

|f(21) — fl29)] < sgpif(zl) — flz2)| < ir;f / dist,(m,ap)a—lds

v
< Mpp(z1, 22)°

O

THEOREM 2.6. If a domain D in C is a Lip,-extension domarn,
then it has the Hardy-Littlewood property with the inner diameter
metric of order a.

Proof. In [GM2, Theorem 2.2} it is showed that a domain D in C

is a Lipy-extension domain if and only if there is a constant M < oo

such that for all z;, z9 € D there exists a rectifiable curve -y joining

z1 to zo in D with (2.1) replaced pp{z1, z2)* by |21 — z2|®. Therefore
we get the conclusion.

O
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REMARK 2.7. By Theorem 2.3, Theorem 2.6 and definition of the
Hardy-Littlewood property of order «, we observe that the classes of
uniformly John domains, Lip,-extension domain and domains which
satisfies the Hardy-Littlewood property of order a are properly con-
tained in the class of domains which satisfies the Hardy-Littlewood
property with the inner diameter metric of order a.

3. The Holder continuity of conjugate harmonic functions
in domains

LEMMA 3.1. ([GM1, Theorem 1.1]) If f is harmonic and in Lip, (D),
then

(3.1) 01(2)] < 21 ladist(z, D)

in D.

In [GM1] combining Lemma 3.1 and the fact that an uniform
domain has the Hardy-Littlewood property vields the following ex-
tension of a result due to Privaloff on the continuity of conjugate
harmonic functions in the unit disk.

LEMMA 3.2. ([GM1, Corollary 2.2]) If D is b-uniform and if f is
analytic with Re(f) in Lip,(D), then f 1s in Lip (D) with

(3.2) 1£ila < =11 Re(P) o

where c is a constant which depends only on the constant b.
The above result does not hold for a uniformly John domain.

THEOREM 3.3. There exists an analytic function f on a uniformly
John domain such that Re(f) isin Lip, (D), but f is not in Lips (D).

Proof. Let D = B\ (-1,0] and define a function f on D by
f(2) = Logz which is an analytic branch of logz. Then clearly
D is a uniformly John domam. Also f(z) = log|z| + 1Arg(z) and
Re(f) = log|z| is in Lip, (D), but Arg(z) 1s not in Lip,(D) [K]. O
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To obtain an analogous result of Lemma 3.2 for a uniformly John
domain, we need a following analogous result of Lemma 3.1 for f ¢

Lw?(D). The proof is similar to the proof of Lemma 3.1 [GMI,
Theorem 1.1].

THEOREM 3.4. If f is harmonic and 1n Lwp2(D), then for z € D

(33 0£(2)| < ZIIfliddist(z, aD)* ",

Proof. For z € C and 0 < r < o0 let B(z,r) denote the open
disk with center z and radius r. If z € D and r < dist{z, 8D), then
B{z,7) C D and with the Poisson integral formula we obtain

1 (%, r?—1h?

f(z + h) - f(Z) = — o (W:h—lz - 1)(f(z + rerﬂ) - _f(z))dﬁ

27
B reos@= @)~ 1Al o e g
-4 (f(a-+re) - £(z))d0

lrer® — hj?

for |h| < r where h = |h|e*®. Thus by (1.5),

[flz+h) - f(z)] _ 1 /2" rlcos(6 — ¢)| + |A]
0 (r — {hl)?

T e mpp(z + re*?, z)%d6.

Then since pp(z + re*d, z) = r, we have
i a—1
[Bf(2)] < —mr®T

Letting r — dist(z, 8D) and m — || f||9 then yields (3.3).
O

THEOREM 3.5. If a domain D in C has the Hardy-Littlewood
property with the inner diameter metric of order « and if f is analytic
with Re(f) € Lip% (D), then f is in Lip? (D) with

(3.4 11 < 242 me e,

m
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Proof. Let u = Re(f). Then u is harmonic in D,
5@ = I522) = i3 ()] < 20u(a)] < lullddinnGz, oD)

by the Cauchy-Riemann equations and Theorem 3.4. Then since
D satisfies the Hardy-Littlewood property with the inner diameter
metric of order , we obtain that f is in Lip% (D) with (3.4). O

Now Corollary 2.2 and Theorem 3.5 give an analogous result of
Lemma 3.2 for a uniformly John domain.

COROLLARY 3.6. If a domain D in C is a b-uniformly John do-
main and if f is analytic with Re(f) in Lip&(D), then f is in Lip¢ (D)
with (3.4) replaced ¢(D) by c(b).
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