• 제목/요약/키워드: Linear matrix inequalities

검색결과 330건 처리시간 0.027초

H$\infty$ Control for Linear Systems with Time-Varying Delayed States, Control Inputs, and Measurement Outputs

  • Jeung, Eun-Tae;Kwon, Sung-Ha;Kim, Jong-Hae;Park, Hong-Bae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권2호
    • /
    • pp.106-112
    • /
    • 1999
  • This paper presents an H$\infty$ controller design method for linear systems with time-varying delayed states, inputs, and measurement outputs. Using a Lyapounov unctional , the stability for delay systems is discussed independently of time delays . And a sufficient condition for the existence of H$\infty$ controllers of n-th order is given in terms of three matrix inequalities. Based on the positive-definite solutions of their matrix inequalities, we briefly explain how to construct H$\infty$ construct H$\infty$ controller, which stabilizes time-delay systems independently of delays and guarantees an H$\infty$ norm bound.

  • PDF

시간 지연을 갖는 Lipschitz 비선형 시스템의 강인 상태 관측기 (Robust State Observer for Lipschitz Nonlinear Systems with Time Delay)

  • 이성렬
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1089-1093
    • /
    • 2008
  • This paper presents a robust state observer design for a class of Lipschitz nonlinear systems with time delay and external disturbance. Sufficient conditions on the existence of the proposed observer are characterized by linear matrix inequalities. It is also shown that the proposed observer design can reduce the effect on the estimation error of external disturbance up to the prescribed level in spite of the existence of time delay. Finally, a numerical example is provided to verify the proposed design method.

단측 Lipschitz 비선형시스템의 축차 관측기 설계 (Reduced Order Observer Design for One-Sided Lipschitz Nonlinear Systems)

  • 이성렬
    • 제어로봇시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.281-284
    • /
    • 2013
  • This paper describes a reduced observer design problem for one-sided Lipschitz nonlinear systems which are considered as a generalization of Lipschitz systems. The sufficient conditions to ensure the existence of reduced order observer are provided by using linear matrix inequalities. Moreover, it is shown that existence conditions of reduced order observer can be obtained from sufficient conditions on the existence of full order observer. As a result, this fact implies that the existence of full order observer for one-sided Lipschitz systems guarantees that of reduced order observer. Finally, a simulation example is given to verify the validness of the proposed design.

Improved Digital Redesign for Fuzzy Systems: Compensated Bilinear Transform Approach

  • 김도완;주영훈;박진배
    • 한국지능시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.765-770
    • /
    • 2005
  • This paper presents a new intelligent digital redesign (IDR) method via the compensated bilinear transformation to design the digital controller such that the digital fuzzy system is equivalent to the analog fuzzy system in the sense of the state-matching. This paper especially consider a multirate control scheme with a predictive feature, where the digital control input is held constant N times between the sampling points. More precisely, the multirate control scheme is proposed that utilizes a numerical integration scheme to approximately predict the current state from the state measured at the sampling points, the delayed measurements. For this system, the IDR conditions incorporated with stabilizability in the format of the linear matrix inequalities (LMIs) are derived. The superiority of the proposed technique is convincingly visualized through a numerical example.

파라미터 불확실성을 갖는 이산시간 어핀 T-S 퍼지 시스템의 제어기 설계 (Controller Design for Discrete-Time Affine T-S Fuzzy System with Parametric Uncertainties)

  • 이상인;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2516-2518
    • /
    • 2004
  • This paper proposes a stability condition in discrete-time affine Takagi-Sugeno (T-S) fuzzy systems with parametric uncertainties and then, introduces the design method of a fuzzy-model-based controller which guarantees the stability. The analysis is based on Lyapunov functions that are continuous and piecewise quadratic. The search for a piecewise quadratic Lyapunov function can be represented in terms of linear matrix inequalities (LMIs).

  • PDF

Robust Stability Analysis of Fuzzy Feedback Linearization Control Systems

  • Park, Chang-Woo;Lee, Chang-Hoon;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권1호
    • /
    • pp.78-82
    • /
    • 2002
  • In this paper, we have studied a numerical stability analysis method for the robust fuzzy feedback linearization regulator using Takagi-Sugeno fuzzy model. To analyze the robust stability, we assume that uncertainty is included in the model structure with known bounds. For these structured uncertainty, the robust stability of the closed system is analyzed by applying Linear Matrix Inequalities theory following a transformation of the closed loop systems into Lur'e systems.

네트워크 기반 이산 시간 제어 시스템의 최대 허용 지연 한계 및 실시간 스케줄링 기법에 관한 연구 (Maximum Allowable Delay Bounds and Real-time Scheduling Method of Networked Discrete-time Control Systems)

  • 김동성;최동혁
    • 제어로봇시스템학회논문지
    • /
    • 제12권7호
    • /
    • pp.719-727
    • /
    • 2006
  • This paper proposes a new method to obtain a maximum allowable delay bound for a scheduling of networked discrete control systems and event-based scheduling method. The proposed method is formulated in terms of linear matrix inequalities and can give a much less conservative delay bound than the existing methods. A network scheduling method is presented based on the delay obtained through the proposed method, and it can adjust the sampling period to allocate same utilization to each control loop. The presented method can handle three types of data (sporadic, emergency data, periodic data and non real-time message) and guarantees real-time transmission of periodic and sporadic emergency data using modified EDF scheduling method.

장주기모델로 구성된 다개체시스템의 퍼지 군집제어 (Fuzzy Formation Controlling Phugoid Model-Based Multi-Agent Systems)

  • 문지현;이재준;이호재
    • 제어로봇시스템학회논문지
    • /
    • 제22권7호
    • /
    • pp.508-512
    • /
    • 2016
  • This paper discusses a Takagi-Sugeno (T-S) fuzzy controller design problem for a phugoid model-based multi-agent system. The error between the state of a phugoid model and a reference is defined to construct a multi-agent system model. A T-S fuzzy model of the multi-agent system is built by introducing a nonlinear controller. A fuzzy controller is then designed to stabilize the T-S fuzzy model, where the synthesis condition is represented in terms of linear matrix inequalities.

Robust Fuzzy Feedback Linearization Control Based on Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.356-362
    • /
    • 2002
  • In this paper, well-known Takagi-Sugeno fuzzy model is used as the nonlinear plant model and uncertainty is assumed to be included in the model structure with known bounds. Based on the fuzzy models, a numerical robust stability analysis for the fuzzy feedback linearization regulator is presented using Linear Matrix Inequalities (LMI) Theory. For these structured uncertainty, the closed system can be cast into Lur'e system by simple transformation. From the LMI stability condition for Lur'e system, we can derive the robust stability condition for the fuzzy feedback linearization regulator based on Takagi-Sugeno fuzzy model. The effectiveness of the proposed analysis is illustrated by a simple example.

선형 행렬 부등식을 이용한 정방 비결합 제어기의 $H_{\infty}$ 설계 ($H_{\infty}$ Design for Square Decoupling Controllers Using Linear Matrix Inequalities)

  • 강기원;이종성;민덕기;박기헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2642-2644
    • /
    • 2000
  • In this paper, the decoupling $H_{\infty}$ controller which minimizes maximum energy in the output signal is designed to reduce the coupling properties between input/output variables which make it difficult to efficiently control a system. And for a given decoupling $H_{\infty}$ problem, an efficient method is sought to find the controller coefficients through Linear Matrix Inequalities(LMI) by which the problem is formulated into a convex optimal problem.

  • PDF