DOI QR코드

DOI QR Code

Robust Stability Analysis of Fuzzy Feedback Linearization Control Systems

  • Park, Chang-Woo (Dept. of Electrical and Electronic Eng., Yonsei Univ) ;
  • Lee, Chang-Hoon (Division of Information and Communication Engineering, Paichai University) ;
  • Park, Mignon (Dept. of Electrical and Electronic Eng., Yonsei Univ)
  • Published : 2002.03.01

Abstract

In this paper, we have studied a numerical stability analysis method for the robust fuzzy feedback linearization regulator using Takagi-Sugeno fuzzy model. To analyze the robust stability, we assume that uncertainty is included in the model structure with known bounds. For these structured uncertainty, the robust stability of the closed system is analyzed by applying Linear Matrix Inequalities theory following a transformation of the closed loop systems into Lur'e systems.

Keywords

References

  1. Slotine, J. E. and Li, W.: 'Applied nonlinear control', Prentice-Hall, Englewood Cliffs, 1991
  2. Isidori, A.: 'Nonlinear control systems', Springer-Verlag, Berlin, 1989
  3. Sugeno, M.: 'Fuzzy control', Nikangoubyou- Shinnbun-sha, Tokyo, 1988
  4. Wang, L.: 'Adaptive fuzzy systems and control: designand stability analysis', Prentice-Hall, Englewood Cliffs,1994
  5. Chen, B. S., Lee, C. H., Chang, Y. C.: '$H^\infty$ tracking design of uncertain nonlinear SISO systems : adaptiv fuzzy approach', IEEE Trans. Fuzzy Systems, 1996, 4(1) pp. 32-43 https://doi.org/10.1109/91.481843
  6. Fischle, K. and Schroder, D.: 'An improved stable adaptive fuzzy control method', IEEE Trans. fuzzy Systems,1999, 7(1) pp.27-40 https://doi.org/10.1109/91.746301
  7. Tsay, D. L., Chung, H. Y. and Lee, C. J.: 'The adaptivecontrol of nonlinear systems using the Sugeno-type offuzzy logic', IEEE Trans. Fuzzy Systems, 1999, 7(2) pp.225-229 https://doi.org/10.1109/91.755402
  8. Kang, H. J., Kwon, C., Lee, C. H. and Park, M.: 'Robuststability analysis and design method for the fuzzyfeedback linearization regulator', IEEE Trans. FuzzySystems, 1998, 6(4) pp. 464-472
  9. Takagi, T., Sugeno, M.: 'Fuzzy Identification of systemsand its applications to modeling and control', IEEETrans. Syst, Man, Cybern. 1985, 15(1) pp. 116-132
  10. Boyd, S.: 'Linear matrix inequalities in systems andcontrol theory', SIAM, Philadelphia, 1994
  11. Nesterov, Y., Nemirovsky, A.: 'Interior-point polynomialmethods in convex programming', SIAM, Philadelphia, 1994
  12. Wang, H. O., Tanaka, K., Grifiin, F. G.: 'An approach to fuzzy control of nonlinear system: stability and design issues', IEEE Trans. Fuzzy Systems, 1996, 4(1)pp. 14-23 https://doi.org/10.1109/91.481841
  13. Tanaka, K., Ikeda, T., Wang, H. O.: "Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, $H^{{\infty}}$ control theory, and linear matrix inequalities", IEEE Trans. Fuzzy Systems, 1996 4(1) pp. 1-13 https://doi.org/10.1109/91.481840
  14. Taniguchi, T., Tanaka, K., Yamafugi, K. and Wang, H. O.: "A new PDC for fuzzy reference models", FUZZ-IEEE '1999, Aug. 1999, Seoul, Korea, pp.898-903
  15. Lam, H. K., leung, F. H. F and Tam, P. K. S.: "An improved stability analysis and design of fuzzy control systems", FUZZ-IEEE'1999, Aug. 1999, Seoul, Korea pp. 430-433
  16. Kim, E., Kang, H. J., and Park, M.: "Numerical stability analysis of fuzzy control systems via quadratic programming and linear matrix inequailities", IEEE Trans. Fuzzy Systems, 1999, 29(4) pp. 333-346
  17. Lur'e, A. I.: "Some Nonlinear problems in the theory of automatic control", H. M. Statinonery Off., London, 1957