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Abstract

In this paper, we have studied a numerical stability analysis method for the robust fuzzy feedback linearization regulator using
Takagi-Sugeno fuzzy model. To analyze the robust stability, we assume that uncertainty is included in the model structure with
known bounds. For these structured uncertainty, the robust stability of the closed system is analyzed by applying Linear Matrix
Inequalities theory following a transformation of the closed loop systems into Lur'e systems.
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| . Introduction

Fuzzy feedback linearization is a feedback linea-ization
method which uses a fuzzy model as a nonlinear system
model. In [3], the fuzzy feedback linearization concept was
introduced using Takagi-Sugeno fuzzy model. However,
robustness issue which is significant in practical applications
was not considered in this work. In some previous researches,
adaptive techniques were applied [4]-[7]. While adaptive fuzzy
feedback linearization guarantees Lyapunov stability in the
presence of uncertainty, it has some practical limitations
because of its complex structures.

LMI theory is the new and fast growing field and an
_valuable alternative to the analytical method [10], [11]. A
variety of problems arising in system and control theory can
be reduced to a few standard convex or quasiconvex
optimization problems involving LMI. Since these resulting
optimization problems can be easily solved by numerical
computation, LMI techniques are very efficient and practical
tools for the complex control problems. Specifically, a class of
fuzzy control problems which is difficult to solve analytically,
LMI techniques can afford the practical solutions. In the
recent papers [12]-[16]), the applicability of LMI techniques
were showed excellently to fuzzy control systems.

To apply LMI techniques to our stability analysis problems,
the closed system should be transformed into the standard
form which has available LMI solution. In this paper, a
numerical robust stability analysis for the fuzzy feedback
linearization regulator is presented using Linear Matrix
Inequalities (LMI) Theory. Well-known Takagi-Sugeno fuzzy
model is used as the nonlinear plant model. Uncertainty is
assumed to be included in the model structure with known
bounds. For these structured uncertainty, the closed system can
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be cast into Lur'e system by simple transformation. From the
LMI stability condition for Lur'e system [17], we can derive
the robust stability condition for the fuzzy feedback
linearization regulator based on Takagi-Sugeno fuzzy model.

II. The fuzzy feedback linearization regulator
based on T-S fuzzy model

2.1 Problem formulation

Consider the regulation problem of the following #-th
order nonlinear SISO system

2 = A x) + g(x)u - e9)]

where f and g are unknown or uncertain, but bounded
continuous nonlinear functions. Let x=[x, x, ,x(ﬂﬂ)]T
= R" be the state vector of the system which is assumed to
be available.

In this paper, well-known Takagi-Sugeno fuzzy model is
used to identify the unknown nonlinear system (1).
Takagi-Sugeno fuzzy mode. is available in IF-THEN form (2)
or Input-Output form (3).

- IF-THEN form
plant rule 7:
IF x is My and x is Mp and - and """ is M,

THEN x"=( a;+ 4a;(1))7 - x+(bi+4b(t))u , (o)
i=1,2,"',7 -~

where x=[ %, - ,x" 17,
a;, da;()eR", b, 4b{HER
In (2), M; is the fuzzy set and » is the number of rules.
Also, Ada;(t) and Ab{t) denotes the norm-bounded time-



Robust Stability Analysis of Fuzzy Feedback Linearization Control Systems

varying modeling uncertainty.

- Input-Output form
b Wl art Aa ()T m (bt db(1))u)
ﬁlwi( z)

x =
=

= B Cart dai ()T 2+ (b, +Ab,(1)u) ()

where

wi( x)___ Jllei;‘(x(j_l)), hi( x):.M

3wl )

=

Mi(xY™") is the grade of membership of x“"V in .
It is assumed in this paper that
w(x) =20, i=1,2,-,7r, le,-(x) >0
Therefore,

hlx) 20, i=1,2,,7, glh,v(x)? 1

For (3) to be controllable, ﬁlhi( x)b; = 0 for xin certain

controllability region U.C R” is required. If this controll-

ability requirement is satisfied, the following fuzzy feedback
linearization regulator (4) can cancel the nonlinearity of (3)
and achieve perfect linearization (5).

~T T
a - x — 21141‘(1) a; *x
<

u=

2 ki b,
T
Zhi(x)( a — aiT)' x
=Ll (4)
PIIEITH
where we use the same @, , b, and % x) with the

fuzzy model (3) for all ; and 2 € RY" is the linear state
feedback gain vector. The perfectly linearized system can be
written as (5).
w- 2" x )
However, due to the inevitable uncertainty, perfect
linearization can not be achieved in practical application. By
substituting (4) into (3), the imperfectly linearized system can
be written as (6). From the bounds of AJa;(¢) and 4b(#),
the bound of ap(#) can be derived as in Appendix A. Thus,
the closed system (6) can be treated as the linear system with
the sector bounded nonlinearities. In the next section, the
numerical robust stability analysis via LMI for the closed
system (6) will be presented.

#7= 3 2t Lh(®) e -
e (S h(x) (32— @) - x)
Zlh,‘(x)bi =

=2 x4+ a® - x ®)

where
an(d = R hx) da(D)" - x

3 b 2)4b,(8)
+’;__—

(S h(x) (a—a) - x)
WA

2.2 Implementation

To implement the fuzzy feedback linearization regulator (4)
in the fuzzy rule-based form, we utilize the control structure
shown in Figure 1, which is the same one used in [8]. In this
structure, the fuzzy feedback linearization regulator is divided
into two blocks, a fuzzy rule-based controller block and a
simple nonlinear function block. The fuzzy controller block
shares the same fuzzy sets M; and the parameters g@; and b,
with the fuzzy model in the premise parts for all ; and ;.
Therefore, 2 is the only design parameter of the fuzzy
controller block. The nonlinear function block simply divides
u; by wup to produce the same # as in Eqn. (4). i-th rule
of the fuzzy controller block can be represented by (7).

IF x is My and % is Mpand - and "7 is M,

(a— a;)" x

U
THEN | |= =12, (D)
Us b,'
=N
Xy Auzzy u= 2,
CONTROUER > U,
",

Fig. 1. Control structure of fuzzy feedback linearization regulator

lll. LMI-based robust stability analysis

Consider the following Lur'e system (8)

x= Ax + Bp 8

p:(t) = ¢;( x:(¢)), i =1, =, u,

7,

where p(¢) € R
1] sector conditions

, and the functions ¢; satisfy the [0,

0 < o¢i(0) < & for all 0 =R 9)
or equivalently,
¢:(6)(¢;(c) —0) <0 for all o R

The linear system with the sector bounded nonlinearities
can be cast into Lur'e system. Therefore, the closed system (6)
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can be cast into Lur'e system. In Theorem 1, Lyapunov
stability condition for Lure system is derived using LMI
Theory. In the proof of Theorem 1, S-procedure in LMI
techniques [10] is used.

Lur'e system (8) is stable in the sense of

Theorem 1 :
Lyapunov if there exist P > 0,
A = diag (4, -, A,) = 0 and
T = diag (ry, -, 7,) = 0 which satisfy LMI (10).
AP+ PA PB+ATA+ T ] <o 10
B'P+AA+ T AB+B'A-2T

Proof : Let us choose a Lyapunov function

Vix) = x™Px + 2 gﬂifoxlqﬁi(o) do an

Thus the data describing the Lyapunov function are the

matrix P and the scalars 4, , ¢ = 1, -+, #u,. For Wx) to

be positive for nonzero x, we require
P> (0 and A = diag (A, -, A,) 2 0.

The time derivative of V(x) is

AUx) — 5 ( 2P+ Band) (Ax + Bp) (12

where I; denotes the i-th row of »x # identity matrix.
Lyapunov stability condition—d%i)— ¢ 0 holds for all

nonzero x if and only if

( #"P+ Dapid;) ( Ax + Bp) <0 (13)
for all nonzero x.

The S-procedure in LMI
following LMI condition

techniques then yields the

[ ATP+ PA PB+ATA+ T <0
BTP+ AA+T AB+BTA-2T
where

T = diag (7, -, 1) 20,

A = diag (&), -, 4,,) = 0.

Therefore, Lur'e system (8) is stable in the sense of
Lyapunov if there exist P> 0, A = 0 and T = ( which
satisfy LMI (10).

Remark : When we set A = (, we obtain the LMI

ATp+ PA
BTP+ T

PB+ T

<
-2T 0

which can be interpreted as a condition for the existence of

a quadratic Lyapunov function V(x) = x7P x for Lure
system.

To apply Theorem 1, the closed system (6) should be
transformed into Lur'e system (8).
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First, we divide (6) into the linear and the nonlinear part as

(14

2" - a - x ay(t)" - x (14)

Then, the differential equation (14) can be represented by
the state-space equation of (15).

x= Ax + B »p (15)
pi(t) = ¢ ( x:(8)), i=1, -, n
where,
0 1 0 0 000 - 0
_ 0 0 1 0 — 000 0
A=|0 0 0 1, B=(00 0 - 0
A B @ a 111 1
and
6 (xi (1)) = am(t)x; (t), i=1, -, n
The sector condition of ¢; is
a; <a¢;( o)< B, i=1, =, n (16)

where @; = mtin (an(H) and

Bi = m?X (an(9).

The sector bounds @; and B; can be obtained by the
method in Appendix.

By substituting the equations (17) into (15) and (16), the
general (a;, A; ]sector condition for ¢, (16) can be cast
into the [0, 1] sector condition (9) for ¢,. This substitution
procedure is called 'loop transformation'.

D= $i(xi(8)) = (Bi—a) p; + a;x;
p:(t) = &, x;(8)), i=1, -, n

(17

or in the matrix form.

7) = Mp+ Ng
where M = diag (¢, , -, @, ) and
N = diag (Bi—a,, -, B.—a,)

And the resulting Lur'e system of loop transformation can
be expressed as (18)

x= Ax + Bp (18)
pz(t) = ¢,( x,(t) ), 7 =1, SO
where A= A+ BNad B= BM
6 ( x (1)) = %“ixi(t), i=1, ~, n

Applying Theorem 1 to the transformed Lur'e system (18),
we can derive the robust stability condition for the closed
system (6), as in Theorem 2.
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Theorem 2 : The closed system (6) is robust stable in the
sense of Lyapunov if the corresponding Lur'e system (18) of
the closed system (6) satisfies Theorem 1.

Proof : The closed system (6) can be transformed into the
corresponding Lur'e system (18) by the above-mentioned loop
transformation. Therefore, the stability of Lur'e system (18)
implies the robust stability of the closed system (6). Thus, if
the corresponding Lur'e system (18) of the closed system (6)
satisfies Theorem 1, then we can conclude that the closed
system (6) is robust stable in the sense of Lyapunov.

IV. Conclusion

In this paper, we have presented the LMI-based robust
stability condition which can be solved numerically for the
fuzzy feedback linearization regulator via Takagi-Sugeno fuzzy
model. We implemented the fuzzy feedback linearization
regulator based on Takagi-Sugeno fuzzy model and proposed
the LMI-based robust stability condition.
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Appendix
In the followings, we need the basic assumption that
TAH)=1 and T p(x(p)=1.

The maximum and minimum sector bounds of ap(#) can
be computed from (25) and (26)

= max { Zlhi(x(t))da,y( t)}

(25)
SRl (D) 4bLD
+ m?x =1 . Zlh;(x(t))eii
Zlhi(x(f))bi -
min (an(D) = m;n { Z:lh,-(x(t))ddij(t)} (26)
, 2 h{x()AbL D)
n m;n =1 . Zlh;(x(l‘))eif
pWIEON

where e;= a;— a;
The second terms of (25) and (26) can be computed using
the following property.

M0 (o))< P D) day( S T (dai( D) (@D)

The third terms of (25) and (26) can be computed from
(28) and (29)

e | o B D)D)
Fl S,

DI TET)E
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|G A
40" AP
g T
Wl SV A RV T i S . i }
bp A bp =1 Ln e Ln -+
(28)
. hi(x(t))dbi(t)
mtm =1 . Zlhi(x(t))ei;‘
ITC O
I /] R T ST SRR
=min{ <=5 g, S e, Ty & (29
A" AbT | a dE w
e , » T I 4 &

where, b¥=1{ b;| b;> 0}, b7={ b;| b;<0 }

el'={e;le;=20), ej={e;le;<0}
¥ < Bl < 7,

s Pl <

< BhixD)ey < e,

< Thlxd)e; < ¢

46" = ";a;‘ {(4bL8) | 4bgt) =0 },
4b"= T b) | 4D <0)
2= " ((4bLD) | AbLH =0 ),

4™ = “z.‘i‘; ((4b4D) | 4bLD <0}
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