• Title/Summary/Keyword: Line Parallel To Ground

Search Result 63, Processing Time 0.022 seconds

A Vision Based Pallet Measurement Method by Estimating 3D Direction of A Line Parallel to The Ground (지면 평행 직선의 3차원 방향 추정에 의한 비전 기반 파렛트 측정 방법)

  • Kim, Minhwan;Byun, Sungmin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1229-1235
    • /
    • 2020
  • A line parallel to the ground is frequently shown in our daily life, which enables us to guess its direction. Especially, such a guess tends to become clear when a vanishing line of the ground is shown together. In this paper, a vision based pallet measurement method is suggested, which uses a technique for estimating three-dimensional direction of a line parallel to the ground. The technique computes actually a vector heading to intersection of a given imaged line parallel to the ground and the ground vanishing line determined previously on calibrating a measurement camera. Through an experiment of measuring a real commercial pallet with various orientation and distance, we found that the technique could measure the orientation of the pallet correctly and accurately. The technique worked well even though an edge line available on the front plane of a pallet was almost parallel to the ground vanishing line.

Fault Location Algorithm with Ground Capacitance Compensation for Long Parallel Transmission Line (장거리 병렬 송전선로용 대지 정전용량 보상에 의한 고장점 표정 알고리즘)

  • Park, Chul-Won;Kim, Sam-Ryong;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.163-170
    • /
    • 2005
  • This paper deals with an improved fault location algorithm with compensation ground capacitance through distributed parameter for a long parallel T/L. For the purpose of fault locating algorithm non-influenced by source impedance and fault resistance, the loop method was used in the system modeling analysis. This algorithm uses a positive and negative sequence of the fault current for high accuracy of fault locating calculation. Power system model of 160km and 300km long parallel T/L was simulated using EMTP software. To evaluate of the proposed algorithm, we used the several different cases 64 sampled data per cycle. The test results show that the proposed algorithm was minimized the error factor and speed of fault location estimation.

Design and fabrication of a novel multilayer bandpass filter with high-order harmonics suppression using parallel coupled microstrip filter

  • Fathi, Esmaeil;Setoudeh, Farbod;Tavakoli, Mohammad Bagher
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.260-273
    • /
    • 2022
  • This study presents a novel multilayer structure of parallel coupled-line bandpass filtercentered at 2.42 GHz with a fractional bandwidth value of approximately 19.4%. The designed filter can suppress harmonics with an appropriate frequency response by incorporating different techniques based on the multilayer technique. A combination of different techniques such as radial microstrip stubs and defected ground structure (DGS) and defected microstrip structure techniques are employed to suppress harmonics up to 5f0. These techniques are used in two layers to suppress up to 5f0. In addition, in this study, the effects of different parameters, such as the width of slot-line DGS, the angle of diagonal line slots in the upper layer, and the air gap between the two layers on the filter performance, are investigated. To verify the correct circuit operation, the designed filter is implemented and tested. The measurement results of the proposed filter are compared with the simulation results.

Methodology of Parallel Ground Conductor Installation on Underground Transmission System (지중송전 시스템의 병행지선 설치 방안 연구)

  • Hong, Dong-Suk;Park, Sung-Min;Hahn, Kwayng-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.470-471
    • /
    • 2008
  • SVL is installed at underground transmission system to protect cables and insulation joint-box from overvoltages caused by lightning, switching, and line-to-ground fault. Domestic underground power system adopts cross bonding type to reduce the induced voltage at sheath, but single-point bonding is required depending the system installation configuration. SVL can be easily broken by overvoltages induced at joint-box because single-point bonding has uneffective system structure to extract fault current. ANSI/IEEE recommends Parallel Ground Continuity Conductor(PGCC) to prevent SVL breakdown. In this paper, EMTP simulation is performed to analyze effects on SVL under PGCC installation when single-line-to-ground fault occurs. The result shows that PGCC and short single-point bonding distance can reduce overvoltages at SVL.

  • PDF

A Parallel Coupled Line Band Pass Filter Using Defected Ground Structure Inverter (결함 기저면 구조 인버터를 이용한 평행 결합 선로 대역 통과 필터)

  • Kim, In-Seon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.54-60
    • /
    • 2008
  • In this paper, the novel method is proposed to realize the parallel coupled line band pass filter using defected ground structure(DGS) inverter. This method provides simple solution which easily resolves the limit of line width happened due to high impedance on the occasion of designing filter composed of line inverter. On the basis of the proposed method and conventional method, the band pass filters haying 13.3% fractional bandwidth were designed and implemented. The measured data of two filters show usually good agreement with each other, but on the other hand the length of proposed filter become shorten about 15mm and the width of inverter line was expanded two times or more in comparison with conventional filter.

Parallel Transmission Lines Fault location Algorithm for single line-to-ground fault (평형 2회선 송전 계통의 1선지락시 고장점 표정 알고리즘)

  • Yang, Xia;Choi, Myeon-Song;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.317-319
    • /
    • 2006
  • This paper proposes a fault location algorithm for two-parallel transmission line in the case of single line-to-ground fault Proposed algorithm is using voltage and current measured in the sending-end. The fault distance is simply determined by solving a second order polynomial equation due to the direct circuit analysis. The simulations by PSCAD/EMTDC have demonstrated the accuracy and effectiveness of the proposed algorithm.

  • PDF

Analysis on the Induced Lightning Shielding Effect According to the Neutral Wire Installation Structure of a 22.9kV Distribution Line (22.9kV 배전선로 중성선 설치 구조에 따른 유도뢰 차폐효과 분석)

  • Kim, Jeom-Sik;Kim, Do-Young;Park, Yong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.191-196
    • /
    • 2010
  • The electricity distribution system in Korea is adopting a multi-grounding system. Protection of this distribution system against lightning is performed by installing overhead ground wires over the high voltage wires, and connecting the overhead ground wires to the ground every 200 m. The ground resistance in this system is limited not to exceed $50\Omega$ and overhead ground wire and neutral wire are multiple parallel lines. Although overhead ground wire and neutral wire are installed in different locations on the same pole, this circuit configuration has duplicated functions of providing a return path for unbalanced currents and protecting the distribution system against induced lightning. Therefore, the purpose of this study is to analyze the induced lightning shielding effect according to the neutral wire installation structure of a 22.9kV distribution line in order to present a new 22.9kV distribution line structure model and characteristics. This study calculated induced lightning voltage by performing numerical analysis when an overhead ground wire is present in the multi-grounding type 22.9kV distribution line structure, and calculated the induced lightning shielding effect based on this calculated induced lightning voltage. In addition, this study proposed and analyzed an improved distribution line model allowing the use of both overhead wire and neutral wire to be installed in the current distribution lines. The result of MATLAB simulation using the conditions applied by Yokoyama showed almost no difference between the induced lightning voltage developed in the current line and that developed in the proposed line. This signifies that shielding the induced lightning voltage through overhead wire makes no difference between current and proposed distribution line structures. That is, this study found that the ground resistance of the overhead wire had an effect on the induced lightning voltage, and that the induced lightning shielding effect of overhead wire is small.

The Study on the Impulse Characteristic of Secondary Arresters in Power Distribution System (가공 배전선로 중성선과 가공지선 겸용시의 임펄스 특성 연구)

  • Kang, Moon-Ho;Kim, Dong-Myeong;Song, Il-Keun;Chun, Sung-Nam
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.297-299
    • /
    • 2004
  • In multi-ground distribution system, overhead ground wire and neutral wire are parallel connected to offer the electrical power energy and protect damage of lightning strokes. Therefore a case where the two wires become single wire, the power company can get the benefit such as installation cost saving and line fault protection by simplify of distribution line. In this paper we describe the result of impulse test in both system ; one is the present power system the other is unified power system parallel connected overhead ground wire and neutral wire. As a result of this impulse test, the present power system get lower impulse voltage than the unified power system.

  • PDF

Fault Location Algorithm for Parallel Transmission Line with a Teed Circuit (병행 2회선의 T분기 선로 고장점 표정 알고리즘)

  • Kwon, Young-Jin;Kang, Sang-Hee;Lee, Seeng-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.49-51
    • /
    • 2000
  • This paper presents a fault location algorithm for single-phase-to-ground faults on the teed circuit of a parallel transmission line. This algorithm uses only local end voltage and current information. Remote end and fault currents are calculated by using distribution factors. To reduce load current effect, negative sequence current is used. EMTP simulation result have shown effectiveness of the algorithm under various conditions.

  • PDF

Fault Location Algorithms for the Line to Ground Fault of Parallel-Circuit Line in Power Systems (전력계통 송배전선로 2회선 1선지락사고 고장거리 검출 알고리즘)

  • 최면송;이승재;강상희;이한웅
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.1
    • /
    • pp.29-35
    • /
    • 2003
  • This paper presents a fault location algorithm when there are parallel circuits in power system networks. In transmission networks, a fault location method using the distribution factor of fault currents is introduced and in distribution networks a method using direct 3-phase circuit analysis is developed, because the distribution networks are unbalanced. The effect of parallel circuits in fault location is studied in this paper. The effect is important for the range of protecting zones of distance relay in transmission networks and fault location in distribution networks. The result of developed fault location algorithm shows high accuracy in the simulation that using the EMTP.