2006 T hetE 7| et M2 2EE FA

10
>
pul
Toh

=& (2006.11.3~4)

Y 23 S ASY 14NN 1FH BY YAYE

s, A

HE, OISH

Aot AN FHE

Parallel Transmission Lines Fault location Algorithm for single line—to—ground fault

Xia Yang, Myeon-Song Choi, Seung—Jae Lee
Next—generation Power Technology Center, Myongiji—university

Abstract - This paper proposes a fault location algorithm
for two-parallel transmission line in the case of single
line-to-ground fault. Proposed algorithm is using voltage
and current measured in the sending-end. The fault distance
is simply determined by solving a second order polynomial
equation due to the direct circuit analysis. The simulations
by PSCAD/EMTDC have demonstrated the accuracy and
effectiveness of the proposed algorithm.

1. Introduction

Fault location technique for double-circuit transmission
line are more difficult and complex than single lines since
double-circuit lines are characterized by a significant
increase in the mutual coupling effects. When the fault
location algorithm applicable to single lines is directly used
for double-circuit lines, the location accuracy can not be
ensured because of the mutual coupling between parallel
lines.

Various fault location algorithms on parallel transmission
lines have been put forward. The most popular method is
recording the voltage and/or current signals are at the ends
of the line. It can be classified into two categories:
double-ends method [1]-[2] and single-terminal fault location
method [3]-{8]. Although two ends algorithms may present
a better performance, single end algorithms have advantages
from the commercial viewpoint. This is mainly due to the
extra-complexity associated with two ends algorithms
including communication and synchronization between both
ends as well as the cost increasing. Thus, the importance
of improving the performance of single end algorithms
significantly increases. Therefore, there are more researches
focused on the application of the single end method so far.

This paper proposes a much simpler approach for fault
location on two-parallel transmission line in the case of
single line-to-ground fault. The proposed algorithm requires
voltage and current in the sending-end. The effectiveness of
the proposed algorithm has been testified on a simple
double-circuit transmission line through simulations by
EMTDC. The results show a very high degree of accuracy
with variation of fault resistance.

2. Proposed Algorithm

The proposed algorithm requires the three-phase voltage
and current at the relaying point of the sending-end and
the zero sequence current of the adjacent parallel line. An
assumption is that the mutual impedance between two
circuits is the same as that between phases in a single
circuit, which is equalized to distribute in line. In addition,

the shunt capacitance of the system is not taken into
account. Fig. 1 shows the one line system diagram of a
simple double-circuit transmission line in the case of a
single line-to-ground fault.
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<Fig.1> A simple distribution system

where,
Zs: impedance for source S;
ZR: impedance for source R;
Z: line impedance;
Zm: mutual impedance between circuits;
Is: current at the local end of faulted circuit;
Ir; current at the remote end of faulted circuit;
It: current at the healthy circuit;
Ry fault impedance;
I fault current;
p: fractional fault distance from the local end.

In terms of the superposition principle in linear networks,
the faulted network is decomposed into three sequence
networks - positive, negative and zero-sequence networks.
Thus, the relationship between the a-phase voltage Vsa and
its sequence components Vs0, Vsi, Vs2 is

Va=VatVa+V, )

In the faulted circuit, assuming that phase a is to
ground, the voltage at the relaying point is achieved
through the analysis of the loop 1 based on KVL.

V= pUZo+ 102, +1,Z,)+ IfRf +plZ,, )

where,
Is012: sequence current at the local end of faulted circuit;
Zm0: zero-sequence mutual impedance between circuits
1t0: zero-sequence current at the heaithy circuit.

For a transmission line in a three-phase power system,
the positive and negative sequence impedances Z1 and Z2
are always equal.

Z,=2, ?3)
Substituting (3) into (2), (4) can be obtained below.
z
V,=pZ,(I,(Z-D+I1)+I1,R, +pl Z,
1 0 Zl iy 10&mo (4)
where, Isa is a-phase current at the local end of faulted
circuit. Define,
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L=loZ-ny+1,
Z, (5)

Thus, Vie=pZ 1+ 1R, +plZ, (6)

In (6), all impedances except for fault resistance Rf are
known constants; Vsa, [sa, IsO, and 1t0 can be obtained at
the measuring point. On the other hand, fault curmrent If
can not be calculated with only the local end relaying
signals of the faulted circuit. Hence, KVL based loop 2 is
taken into account in zero-sequence circuit.

-pZdy-pZ,l,+(-p)Z,,~(1-p)Z,1,

+ 2o+ pZ, 1 -(1-p)Z,1,,=0 )
where,
Ir0: zero-sequence current at remote end of faulted circuit.
_ Plo—1,
Thus, T d-p) (8)

In the case of a single line-to-ground fault, the
relationship between zero-sequence If0 and the currents Ifa,
Ifb, Ifc is considered,

31[0=1fa+ljb+1[c=1f 9
where, lp=1,=0
To eliminate the unknown Jf, substituting (9) into (6),
Vi=pZd,+31,R, +pl,Z,, an
Furthermore, Io=14+1, (10)
Substituting (10) into (11),
V= P21, +3 o+ 1)R, +plyZ,, (12)
Then substituting (8) into (12) to eliminate Ir0,
1,-1
V,=pZl,+3(=>—R, +pl Z
a = Py, (l_p)[ Pl oL, a3
Define, Iy=1,-1, (14)
3/,R
V=pZl,+—2L+pl Z
Thus, sa = PLydy 1-p PligL g (15)

According to (15), the second order polynomial equation
of fractional fault distance variable can be achieved below.

PZ(leA +1,0Z,5)-pV, +Z 1, +1,Z,,)
+Vm—-3IBRf=0 (16)
Since the mutual impedance between two circuits is the
same as that between phases in a single circuit, thus,
Zyy =32, (17
Substituting (17) into (16),
PZd,+31,Z,) - pV,, + 21, +31,,Z,)

+V,-31,R, =0 (18)
Define,
a=(ZJ1,+31,Z)Yb=-(V +Z]1, +31,OZM)’
c=V, d=-3I; (19
ThUS, apz + bp+C + de = 0 (20)

In order to eliminate Rf, (20) would be separated into
the real and imaginary parts shown below.

(a.+ja)p’ +(b,+jb)p+(c.+jc)+(d, +jd )R, =0 @21
Thus,
a,pz+b,p+c,+d,R/=0 (22)

a,p2+b,p+c,+d,Rf:0 23)
So, fault resistance can be obtained according to (23).
a , b c
R =—lipt T, i
A ] 4)
Substituting (24) into (23),
a, 2 b c
a, -—-d +(b,~-—+d)p+(c,——d,)=0
(a, 7 p+ (b, 2 p+(c, p] )

i

(25)
Define,

a b
A=(a -—Ld) B=(b--Ld) C=(c -
(a, 7 ,), (&, P ,)’ (c,

Sa)
d 26)

Thus, the final second order polynomial equation is
reached below.

Ap* +Bp+C=0 @7
The roots of (27) is
~BxVB'-44C
p= 24 28)

The fractional fault distance p is between 0 and 1.
3. A Conventional Algorithm

A conventional algorithm is as similar as the proposed
algorithm. The only difference is the conventional algorithm
with an assumption.

As in (6) above, it is transformed into (29) below.

Z Z
V= PZLo(GE= )+ Ly + 1y Z22) + )R,
1 1

(29)
Define,
V4 V4
I,=1,(2-D+1 +1,-22
g, °Z (30)
Thus, Va=pZly~1,R, 31
Further transformation,
7
Vu pZ,-—LR =0
1 P 1 y (32)

On the assumption that the angle of If and that of IfA
are same, then it would achieve,

14
imag(—=%-pZ)=0
I, (33)
. V., .
p = imag(—**)/imag(Z,)
The solution is, 1 1 ) (34

4. Case Study
4.1 Accuracy

Simulations by PSCAD/EMTDC have been performed in
a simple double-circuit transmission system on a 154 [kV],
100 [km] as same in Fig. 1. The data for the system are
given in Table 1.

<Table 1> System Data

positive-sequence | zero-sequence impedance

impedance Self Mutual

Line 0.0357 0.3610 0.3252

[0/km] +j0.4828 +j1.3790 +j0.8963
Source| S | 4.145:82.6106° 10.261:79.5°

[ | R 113.4187:80.2905° 49.0618.68.9051°
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Phase-a to ground fault is considered. The fault distance
is varying from 10 [km] to 90 [km]with variation of fault
resistance from 10 [ohm] to 100 [ohm]. And the estimated
fault distance is shown in Table 2. Fig. 2 shows the
estimation error of fault distance.

<Table 2> Estimated fault distance

Rfl ]
10 30 50
dfkm] 100
10 9.9838 9.9713 9.9686 | 9.9668
20 19.9936 | 19.9673 | 19.9603 | 19.9580
30 29.9944 | 29.9559 | 29.9426 | 29.9367
40 39.9779 | 39.9279 | 39.9075 | 39.8957
50 50.0093 | 49.9465 | 499177 | 49.8959
60 60.0492 | 59.9716 | 59.9334 | 59.8985
70 70.0805 | 69.9865 | 69.9398 | 69.8926
80 80.1511 | 80.0399 | 79.9871 | 79.9314
90 90.2156 | 90.1050 | 90.0672 | 90.0513
025
[ [ [ |
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045 1 +;g
——
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5 00— —y—-100
4 005 / :
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<Fig. 2> Estimation error

4.2 Comparison
The comparison between the proposed algorithm and the
conventional algorithm has been carried out in the same

simulation model system shown in Fig. 1.

<Table 3> Comparison

Rf 10 [ohm] 30 [ohm]

d[k Proposed | Conventional | Proposed | Conventional
10 9.9838 | 11.5968 | 99713 | 14.6776
20 19.9936 | 21.8019 | 19.9673 | 252348
30 29.9944 | 32.0480 | 29.9559 | 359248
40 39.9779 | 423446 | 39.9279 | 46.7887
50 50.0093 | 52.7944 | 499465 | 57.9991
60 60.0492 | 63.4147 | 59.9716 | 69.6707
70 70.0805 | 742891 | 69.9865 | 82.0615
80 80.1511 | 85.6940 | 80.0399 | 95.8735
90 90.2156 | 98.1058 | 90.1050 | 112.5061

The results are listed in Table 3. When fault is 10
[ohm], the conventional algorithm could not achieve an

accurate estimation; when fault is 30 [ohm], it comes out
with a large error. But on both cases, the proposed
algorithm can achieve a high degree of accuracy. Fig. 3
gives the comparison curve between both algorithms when
fault resistance is 10 [ohm].
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<Fig. 3> Comparison
5. Conclusion

The proposed algorithm includes two steps. Firstly,
establishing two KVL equations around the parallel line
loops; secondly, applying these to the voltage equation at
the measuring point and separating the real and imaginary
parts, the fault resistance can be eliminated and the final
second order polynomial equation can be obtained. With
taking voltage and current at the sending-end, the proposed
algorithm achieves a high accuracy almost not influenced
by the variations of the fault resistance.
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