• Title/Summary/Keyword: Lightweight Foamed Concrete

Search Result 74, Processing Time 0.027 seconds

Quality Properties of Lightweight Foamed Concrete with Variances in Incorporating Ratio of CKD and Adding Ratio of Stability Agent (CKD 치환율 및 증점안정화제 혼입율 변화에 따른 경량기포 콘크리트의 품질특성)

  • Shin, Hyun-Sub;Yoo, Seung-Yeup;Jeong, Wang-Bok;Pei, Chang-Chun;Kim, Seong-Soo;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.67-70
    • /
    • 2006
  • This study investigates the properties of light weight foamed concrete designed with various incorporating ratios of CKD and adding ratios of PS. Test showed that increase of CKD and PS decreased fluidity of fresh concrete, which need more addition of superplasticizer to secure proper fluidity. As for the sinking depth of specimens, using more CKD or PS decreased the value, due to the improvement of viscosity by micro particles of CKD and reduction of air loss by PS. Those methods are very effective to solve the sinking problem of light weight foamed concrete, which has been highly concerned. For the hardened concrete, compressive strength of specimens exhibited that using around 10% of CKD or 0.02% of PS increased the strength value, but decreased when incorporated or added more amounts of that, due to reduction of the sinking depth, caused by filling effect of the micro particle and improvement of the viscosity.

  • PDF

Evaluation of Properties of Artificial Soil Aggregate Based on Ground Granulated Blast-Furnace Slag According to Unit Binder Content (단위결합재량에 따른 고로슬래그 기반 육성용 인공토양골재의 특성평가)

  • Mun, Ju-Hyun;Sim, Jae-Il;Yun, In-Gu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.85-92
    • /
    • 2016
  • The eight mixes and artificial soil aggregates were prepared for evaluating the practical application of lightweight foamed concrete as soil aggregates. The main parameter was unit binder content ranged between from 100 to $800kg/m^3$. In lightweight foamed concrete, flow, slurry and dried density, and compressive strength at different ages were measured. In Artificial soil aggregates crushed from lightweight foamed concrete, particle size distribution, pH, coefficient of permeability, cation exchange capacity(CEC), and ratio of carbon to nitrogen(ratio of C/N), were measured. The test results showed that flow, slurry and dried density, and compressive strength at different ages of lightweight foamed concrete increased with the increasing of unit binder content. Compressive strength at age of 28, of lightweight foamed concrete with unit binder of more than $500kg/m^3$, was more than 4 MPa. The ammonium phosphate immersion time of more than age of 3, was effective to decrease pH of artificial soil aggregates. In addition, artificial soil aggregates was evaluated as high class in terms of cation exchange capacity(CEC), while satisfied with value of ratio of carbon to nitrogen(ratio of C/N) recommended by landscape specification.

Engineering Characteristics of Filling Materials using Lightweight Foamed Concrete (경량콘크리트를 사용한 충전용 재료의 공학적 특성)

  • Do, Jong-Nam;Kang, Hyung-Nam;Seo, Doo-Won;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.519-523
    • /
    • 2009
  • In this study, the base mixing ratio was determinated to estimate the optimal mixing ratio of material with a change of mixing ratio of micro cement, sand, foaming agent, plasticizer by testing the unconfined compressive strength test. The unconfined compressive strength test was performed to grasp a engineering characteristics of with a change of micro cement, bubble. The results of test, the unconfined compressive strength increased with a micro cement's increase and bubble's decrease. In the future, it will be secured that is reliable datas from laboratory of various condition and in-situ tests to develop optimal lightweight foamed concrete.

  • PDF

Engineering Characteristics of Plasticizer Lightweight Foamed Concrete according to Changes of Mixing Ratio (가소성 경량기포콘크리트의 배합비 변화에 따른 공학적 특성)

  • Seo, Doowon;Kim, Hyeyang;Kim, Kyungmin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.4
    • /
    • pp.33-42
    • /
    • 2010
  • The lightweight foamed concrete is used to reduce the weight of the backfill material. When it is applied, the volume is often contracted due to segregation, necessitating re-injection. In this study, it was manufactured a new lightweight foamed concrete by adding plasticizer and tested the engineering properties of the material. The tests included unconfined compressive strength test, unit weight test, flow test, pH test, and permeability test. The plasticizer is shown to have an important influence on the flow. It was shown that 2~2.4% of plasticizer was adequate. The new material was shown to have positive influence on the flow and reduction of weight when applied to the backfill of the structures.

Decision of Optimized Mix Design for Lightweight Foamed Concrete Using Bottom Ash by Statistical Procedure (통계적 방법에 의한 바텀애쉬를 사용한 경량기포 콘크리트의 최적배합 결정)

  • Kim, Jin-Man;Kwak, Eun-Gu;Cho, Sung-Hyun;Kang, Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.3-11
    • /
    • 2009
  • The increased demand and consumption of coal has intensified problems associated with disposal of solid waste generated in utilization of coal. Major utilization of coal by-products has been in construction-related applications. Since fly ash accounts for the part of the production of utility waste, the majority of scientific investigations have focused on its utilization in a multitude of use, while little attention has been directed to the use of bottom ash. As a consequence of this neglect, a large amount of bottom ash has been stockpiled. However, the need to obtain safe and economical solution for its proper utilization has been more urgent. The study presented herein is designed to ascertain the performance characteristics of bottom ash, as autoclaved lightweight foamed concrete product. The laboratory test results indicated that tobermorite was generated when bottom ash was used as materials for hydro-thermal reaction. According to the analysis of variance, at the fresh state, water ratio affects on flow and slurry density of autoclaved lightweight foamed concrete, but foam ratio influences on slurry density, while, at the hardened state, foam ratio affects on the density of dry and the compressive strength but doesn't affect on flexural and tensile strength. In the results of response surface analysis, to obtain target performance, the most suitable mix condition for lightweight foamed concrete using bottom ash was water ratio of 70$\sim$80% and foaming ratio of 90$\sim$100%.

Engineering Properties of Sound Absorbing Foamed Concrete Using Bottom Ash Depending on Mix Factors (배합요인에 따른 바텀애시 미분말을 사용한 흡음형 기포콘크리트의 공학적 특성)

  • Kim, Jin-Man;Kang, Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.63-70
    • /
    • 2009
  • This study is part of an ongoing research project on the development of a sound-absorbing lightweight foamed concrete manufactured by a hydro-thermal reaction between silica and calcium. As the silica source, pulverized bottom ash was used, and as several cementitious powders of ordinary portland cement, alumina cement and calcium hydroxide were used. Manufacture of foamed concrete was accomplished using the pre-foaming method to make a continuous pore system, which is the method of making the foam by using a foaming agent, then making the slurry by mixing the foam, water, and powders. The experiment factors are W/B, foam agent dilution ratio, and foam ratio, and test items are compressive strength, dry density, void ratio, and absorption rate, as evaluated by NRC. The experiment results showed that the sound absorption of lightweight foamed concrete satisfied NRC requirements for the absorbing materials in most of the experiments. It is thus concluded that foam ratio was the most dominant factor, and significantly affected all properties of lightweight foamed concrete in this study. W/B rarely affected total void ratio and continuous void ratio as well as compressive strength, and dry density and foam agent dilution ratio also had little effect onalmost all properties. The analysis of the correlation between NRC, absorption time, continuous void ratio, and absorption time showed that the interrelationship of the continuous void ratio was high.

Investigation on the Properties of the Lightweight Foamed Concrete in Response to Fine Grains Contents (미세립자 혼입율 변화에 따른 경량기포 콘크리트 특성분석)

  • Choi, Sung-Yong;Park, Yong-Kyu;Jeong, Kwang-Bok;Kim, Sung-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.47-50
    • /
    • 2007
  • This study investigates the properties of light weight foamed concrete (LWC) designed with various content of fine grains (FG). Test showed that LWC containing diverse powder materials with addition, more than 15% of FG, tended to decrease the fluidity of fresh concrete. 10% of FG content in LWC exhibited 4mm in sinking depth, which is the lowest value. This value dramatically increased at more than 15% of addition. However the concrete incorporating LSP proportionally increased the sinking depth in overall. As for the strength, the values of all specimens were under standardization of KS, except for the concrete adding 5 and 10% of FG. Apparent density of LWC showed the lowest value when used 10% of FG which was satisfied the 0.5 grade in KS. For the thermal conductivity, it was also indicated at 0.5 grade in KS, which is under $0.160W/(m{\cdot}k)$. In conclusion, it is demonstrated that adding 10% of FG in LWC was effective in the aspects of recycling of materials, cost effectiveness and quality.

  • PDF

Fundamental Properties of Lightweight Foamed Concrete Depending on Admixture Incorporation (혼화재 치환에 따른 경량기포콘크리트의 기초적 특성)

  • Shin, Jae-Kyung;Yoo, Seung-Yeup;Jeong, Kwang-Bok;Hong, Sang-Hee;Kim, Seong-Soo;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.521-524
    • /
    • 2006
  • In this paper, admixture factors affecting the properties of lightweight foamed concrete incorporating cement kiln dust(CKD) and fly ash(FA), respectively are discussed. Increase in CKD contents resulted in loss of fluidity and decrease in settlement of concrete noticeably. Moreover, the higher the unit weight is, the smaller the settlement depth is. The use of CKD resulted in slight decrease in compressive strength and tensile strength compared to that with other admixture. However, all mixtures met the requirement of strength prescribed in Korean Industrial Standards.

  • PDF

Study on physical performance of lightweight foam concrete using oyster shells according to unit cement content (굴 패각을 사용한 경량기포 콘크리트의 단위시멘트량에 따른 물리적 성능에 관한 연구)

  • Hong, Snag-hun;Shin, Joung-Hyeon;Shin, Dong-uk;Kim, Bong-Joo;Jung, Ui-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.102-103
    • /
    • 2020
  • Research for heat insulation of buildings is being carried out, in which a heat exchange barrier is used around the openings and balcony parts as a method for heat exchange blocks. However, the preparation for a fire is inadequate. In order to improve the EPS used as a heat exchange barrier in an attempt to solve this, there is a study on lightweight foamed concrete, but as the amount of EPS used for strengthening fire resistance increases, it becomes lower. There is no strength applied to buildings, and also. There is a limit to the amount of EPS used. In the study, we use oyster shells to secure the EPS replacement rate limit of lightweight Foamed concrete, and try to measure the change of physical properties depending on the unit cement content.

  • PDF

Micromechanics-based Evaluation of Elastic Modulus of Lightweight Foamed concrete (경량기포콘크리트 탄성계수의 미시역학적 추정)

  • 조호진;송하원;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.4
    • /
    • pp.125-135
    • /
    • 1997
  • 경량기포콘크리트란 시멘트슬러리 속에 미리 생성된 기포를 혼합시켜 양생시킴으써 동일한 체적의 보통콘크리트보다 가볍게 만든 콘크리트를 의미한다. 따라서 경량기포콘크리트는시멘트풀 결합재내에 기포가 무작위로 분포된 복합재료이다. 본 연구의 목적은 이러한경량기포콘크리트의 탄성계수 추정식을 미시역학적 이론을 바탕으로 추정하는데 있다. 이르 위해 본 논문에서는 미시역학적인 미분법에 Hansen의 수정기법을 적용한 수정미분법을 사용하여 경량기포콘크리트의 탄성계수 추정식을 제안하였다. 제안된 추정식을 사용하여 얻어진 결과는 실험결과와 잘 일치하였고 기존의 어떤 추정식보다도 우수한 결과를 보였다.