• Title/Summary/Keyword: Lightly doped drain (LDD)

Search Result 41, Processing Time 0.025 seconds

Characterization of Channel Electric Field in LDD MOSFET (LDD MOSFET채널 전계의 특성 해석)

  • 한민구;박민형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.401-415
    • /
    • 1989
  • A simple but accurate analytical model for the lateral channel electric field in gate-offset structured Lightly Doped Drain MOSFET has been developed. Our model assumes Gaussian doping profile, rather than simple uniform doping, for the lightly doped region and our model can be applied to LDD structures where the junction depth of LDD is not identical to the heavily doped drain. The validity of our model has been proved by comparing our analytical results with two dimensional device simulations. Due to its simplicity, our model gives a better understanding of the mechanisms involved in reducing the electric field in the LDD MOSFET. The model shows clearly the dependencies of the lateral channel electric field on the drain and gate bias conditions and process, design parameters. Advantages of our analytical model over costly 2-D device simulations is to identify the effects of various parameters, such as oxide thickness, junction depth, gate/drain bias, the length and doping concentration of the lightly doped region, on the peak electric field that causes hot-electron pohenomena, individually. Our model can also find the optimum doping concentration of LDD which minimizes the peak electric field and hot-electron effects.

  • PDF

Reduction of Transconduce in Saturation Region of Short Channel LDD(Lightly Doped Drain) NMOSFETs (짤은 채널 LDD(Lightly doped Drain)NMOSFET의 포화영역 Transconductance 감소)

  • 이명복;이정일;강광남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.1
    • /
    • pp.74-80
    • /
    • 1990
  • The transconductance of short channel LDD MOSFETs in the saturation region (high Vd)has shown different characteristics from that of conventional device. The transconductance in saturation regime of short channel LDD MOSFETs is reduced from maximum value at higher gate voltage. This decline is analyzed as the velocity saturation effects of carrier at LDD region but accurate analytical expressions for the drain current Idsat and the transconductance Gmsat in the saturation regime are still not in existence. Recently the drain current dependence of parasitic source resistance Rs has been modeled from the velocity saturation of carriers in LDD region. In this study, we approximate that Rmsat that Rs is linearly dependent on the applied gate voltage. Analytical expressions for Idsat and Gmsat obtained from this approximation show the same general behavior as experimental results of short channel LDD NMOSFETs.

  • PDF

Characterization of Channel Electric Field in LDD MOSFET (LDD MOSFET 채널 전계의 특성해석)

  • Park, Min-Hyoung;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.363-367
    • /
    • 1988
  • A simple analytical model for the lateral channel electric field in gate - offset structured Lightly Doped Drain MOSFET has been developed. The model's results agree well with two dimensional device simulations. Due to its simplicity, our model gives a better understanding of the mechanisms involved in reducing the electric field in the LDD MOSFET. The model shows clearly the dependencies of the lateral channel electric field as function of drain and gate bias conditions and process, design parameters. Advantages of analytical model over costly 2-D device simulations is to identify the effects of various parameters, such as oxide thickness, junction depth, gate / drain bias, the length and doping concentration of the lightly doped region, on the peak electric field that causes hot - electron phenomena, individually. We are able to find the optimum doping concentration of LDD minimizing the peak electric field and hot - electron effects.

  • PDF

A Method for Effective Channel Length Extraction on Lightly Doped Drain MOSFET's (LDD MOSFET의 유효 채널길이 측정법에 관한 연구)

  • Park, Geun-Young;Huh, Yoon-Jong;Lee, Kye-Shin;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.825-828
    • /
    • 1992
  • In this paper, a Hybrid method for an effective channel length($L_{eff}$) on lightly doped drain(LDD) MOSFET's is proposed. In order to investigate the difference of the gate bias and substrate bias defendence of the $L_{eff}$ among various LDD structures, the $L_{eff}$ of the LDD's are extensively examined using simulations and measurement. one group is proposed for conventional MOSFET and the other group Is proposed for LDD MOSFET. It is shown that the $V_{bs}$-dependence of the n-region is different from $V_{gs}$-dependence of it.

  • PDF

LDD 방식에 의한 Short 채널 MOSFET의 특성

  • Gwon, Sang-Jik;Gwon, O-Jun
    • ETRI Journal
    • /
    • v.8 no.4
    • /
    • pp.103-109
    • /
    • 1986
  • LDD(Lightly Doped Drain) 방식에 의한 MOSFET의 제조 공정 및 특성에 관하여 실험 분석하였다. MOS 소자의 채널 길이가 짧아짐에 따라 드레인 가장자리에서 자체 형성되는 높은 전계로 말미암아 애벌런치 항복 전압(avalanche breakdown voltage)이 상당히 감소 한다. 이 전압을 높여 주기 위한 기술로서 LDD 방식이 적용되었으며 종래의 제조방식에 의한 MOSFET와 비교 기술되었다.

  • PDF

Effect of Dopants on Cobalt Silicidation Behavior at Metal-oxide-semiconductor Field-effect Transistor Sidewall Spacer Edge

  • Kim, Jong-Chae;Kim, Yeong-Cheol;Kim, Byung-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.871-875
    • /
    • 2001
  • Cobalt silicidation at sidewall spacer edge of Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) with post annealing treatment for capacitor forming process has been investigated as a function of dopant species. Cobalt silicidation of nMOSFET with n-type Lightly Doped Drain (LDD) and pMOSFET with p-type LDD produces a well-developed cobalt silicide with its lateral growth underneath the sidewall spacer. In case of pMOSFET with n-type LDD, however, a void is formed at the sidewall spacer edge with no lateral growth of cobalt silicide. The void formation seems to be due to a retarded silicidation process at the LDD region during the first Rapid Thermal Annealing (RTA) for the reaction of Co with Si, resulting in cobalt mono silicide at the LDD region. The subsequent second RTA converts the cobalt monosilicide into cobalt disilicide with the consumption of Si atoms from the Si substrate, producing the void at the sidewall spacer edge in the Si region. The void formed at the sidewall spacer edge serves as a resistance in the current-voltage characteristics of the pMOSFET device.

  • PDF

Study on the Optimization of LDD MOSFET (LDD MOSFET의 최적화에 관한 연구)

  • Dal Soo Kim
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.478-485
    • /
    • 1987
  • Optimization of the sub-micron N-channel MOSFET with the LDD(Lightly Doped Drain)structure has been investigated. LDD devices with various length of n-region, n-dose and n-implantation species were fabricated for this purpose. It will be shown that LDD devices have lower substrate current by an order of magnitude and higher breakdown voltage than the conventional devices with comparable channel length. Optimized LDD structure has been found when the sidewall thickness is 2500\ulcorner and n-region is phosphorus implantd with the dose of 1.0E13/cm\ulcorner It has been found that transconductance degradation is less than 20%.

  • PDF

A Simple Model for Parasitic Resistances of LDD MOSFETS (LDD MOSFET의 기생저항에 대한 간단한 모형)

  • Lee, Jung-Il;Yoon, Kyung-Sik;Lee, Myoung-Bok;Kang, Kwang-Nham
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.49-54
    • /
    • 1990
  • In this paper, a simple model is presented for the gate-voltage dependence of the parasitic resistance in MOSFETs with the lightly-doped drain (LDD) structure. At the LDD region located under the gate electrode, an accumulation layer is formed due to the gate voltage. The parasitic resistance of the source side LDD in the channel is treated as a parallel combination of the resistance of the accumulation layer and that of the bulk LDD, which is approximated as a spreading resistance from the end of the channel inversion layer to the ${n^+}$/LDD junction boundary. Also the effects of doping gradients at the junction are discussed. As result of the model, the LDD resistance decreases with increasing the gate voltage at the linear regime, and increase quasi-linearly with the gate voltage at the saturation regime, considering th velocity saturation both in the channel and in the LDD region. The results are in good agreement with experimental data reported by others.

  • PDF

A Study on New LDD Structure for Improvements of Hot Carrier Reliability (핫 캐리어 신뢰성 개선을 위한 새로운 LDD 구조에 대한 연구)

  • 서용진;김상용;이우선;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The hot carried degradation in a metal oxide semiconductor device has been one of the most serious concerns for MOS-ULSI. In this paper, three types of LDD(lightly doped drain) structure for suppression of hot carried degradation, such as decreasing of performance due to spacer-induced degradation and increase of series resistance will be investigated. in this study, LDD-nMOSFETs used had three different drain structure, (1) conventional surface type LDD(SL), (2) Buried type LDD(BL), (3) Surface implantation type LDD(SI). As experimental results, the surface implantation the LDD structure showed that improved hot carrier lifetime to comparison with conventional surface and buried type LDD structures.

New Doping Process for low temperature poly silicon TFT

  • Park, Kyung-Min;You, Chun-Gi;Kim, Chi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.303-306
    • /
    • 2005
  • We report the self-aligned low temperature poly silicon (LTPS) TFT process using simple doping process. In conventional LTPS-TFT, the Lightly Doped Drain (LDD) doping and source/drain doping are processed separately by aligning the gate with the source and drain during the gate lithography step. This ne w process not only fabricates fully self-aligned low temperature poly silicon TFTs with symmetric LDD structure but also simplifies the process flow with combined source/drain doping and LDD doping in one step. LDD doping process can be achieved using only source/drain doping process according to the new structure. In this paper, the TFT characteristics of NMOS and PMOS using the new doping process will be discussed.

  • PDF