• Title/Summary/Keyword: Lid-driven flow

Search Result 51, Processing Time 0.021 seconds

Numerical Simulation of 2-D Lid-Driven Cavity Plow at High Reynolds numbers (높은 Re수에서의 2차원 Lid-Driven 캐비티유동의 수치해석)

  • Myong H. K.;Kim J. E.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.153-158
    • /
    • 2005
  • Numerical simulations of two-dimensional steady incompressible lid-driven flow in a square cavity are presented to verify the validity of a new solution code(PowerCFD) with unstructured grids. The code uses the non-staggered(collocated) grid approach which is very popular for incompressible flow analysis because of its numerical efficiency on the curvilinear or unstructured grids. Solutions are obtained for configurations with a Reynolds number as high as 10,000 with both rectangular and hybrid types of unstructured grid mesh. Interesting features of the flow are presented in detail and comparisons are made with benchmark solutions found in the literature. It is found that the code is capable of producing accurately the nature of the lid-driven cavity flow at high Reynolds numbers.

  • PDF

NUMERICAL SIMULATION OF LID-DRIVEN FLOW IN A SQUARE CAVITY AT HIGH REYNOLDS NUMBERS (정사각 캐비티내 고레이놀즈수 Lid-Driven 유동의 수치해석)

  • Myong H. K.
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.18-23
    • /
    • 2005
  • Numerical simulations of two-dimensional steady incompressible lid-driven flow in a square cavity are presented by a new solution code(PowerCFD) which adopts an unstructured cell-centered method. Solutions are obtained for configurations with a Reynolds number as high as 10,000 with both rectangular and hybrid types of unstructured grid mesh in order to validate the code's independency of grid type. Interesting features of the flow are presented in detail and comparisons are made with benchmark solutions found in the literature. It is found that the code is capable of producing accurately the nature of the lid-driven cavity flow at high Reynolds numbers with no grid type dependency.

SIMULATION OF LID DRIVEN CAVITY FLOW WITH DIFFERENT ASPECT RATIOS BY MULTI-RELAXATION-TIME LATTICE BOLTZMANN METHOD (다중완화시간 격자 볼츠만기법을 이용한 다양한 종횡비의 리드드리븐 공동유동 수치해석연구)

  • Huang, Tingting;Song, Juhun;Lim, Hee-Chang
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.42-51
    • /
    • 2020
  • This study performs a numerical simulation of lid driven rectangular cavity flow with different aspect ratios of k = 0.5 to 4 under Reynolds 100, 1,000, 10,000 by using multi-relaxation time (MRT) Lattice Boltzmann Method (LBM). In order to achieve better convergence, well-posed boundary conditions in the domain should be defined such as no-slip condition on side and bottom solid wall surfaces and uniform horizontal velocity on the top of the cavity. This study focuses on the flow inside different shape of rectangular cavity with the aim to observe the effect of the Reynolds number and aspect ratio on the flow characteristics and primary/secondary vortex formation. In order to validate the study, the results have been compared with existing works. The result shows that the Reynolds number and the aspect ratio both has substantial effects on the flow inside the lid-driven rectangular cavity.

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3367-3382
    • /
    • 2023
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.

NUMERICAL VISUALIZATION OF THE MIXING PATTERN IN A LID-DRIVEN-CAVITY FLOW (드리븐 캐버티 내의 혼합현상에 대한 수치적 가시화)

  • Suh Y.K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.37-45
    • /
    • 2006
  • In this study we present the numerical methods that can be used in visualization of the flow and mixing patterns in a cavity driven by a top lid. The basic flow field within the cavity has been obtained by using a simple numerical scheme. The invariant manifold also called unstable manifold was then attained to represent the mixing pattern within the cavity. It was shown that care must be taken in calculating the trajectories of the fluid particles especially near corners of the cavity. The numerical results show excellent agreement with those obtained experimentally by other research group.

Experimental Study for the Mixing Effect of the Driven Bar on Rotating Flow in a Closed Cylinder (원통내 회전유동에서 회전봉의 형상이 혼합효과에 미치는 영향에 관한 실험적 연구)

  • Kim, Yu-Gon;Kim, Dong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.156-163
    • /
    • 2001
  • The experiment is conducted on the rapidly rotating incompressible flow within a confined cylinder using LDV(Laser Doppler Velocimetry). The configurations of interest are the flows between a rotating upper disk with a bar and a stationary lower disk enclosed within a cylinder. The flow is considered to be an axisymmetric undisturbed basic flow. The results show that the flow is strongly dependent on the radius and the shape of bar but is negligibly affected by the Reynolds number in turbulent flow. It is observed that in the lid-driven case the main forms near the wall as the Reynolds number increases. The thin bar causes the second axial flow due to the suction effect and the thick bar causes the main flow to be pulled toward the surface of the bar. The step bar shows the dual effect of the two. 1:2 tilt bar shows that the main flow distributes wider than the other cases in which interference occurs due step bar.

An Analysis of Fluid Flow Using the Streamline Upwinding Finite Element Method (유선상류 유한요소법을 이용한 유동장의 해석)

  • 최형권;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.624-634
    • /
    • 1994
  • A numerical method which combines equal-order velocity-pressure formulation originated from SIMPLE algorithm and streamline upwinding method has been developed. To verify the proposed numerical method, we considered the lid-driven cavity flow and backward facing step flow. The trend of convergence history is stable up to the error criterion beyond which the maximum value of error is oscillatory due4 to the round-off error. In the present study, all results were obtained with the single precision calculation up to the given error criterion and it was found to be sufficient for our purpose. The present results were then compared with existing experimental results using laser doppler velocimetry and numerical results using finite difference method and mixed interpolation finite element method. It has been shown that the present method gives accurate results with less memories and execution time than the coventional finite element method.

HYBRID Scheme vs. QUICKER Scheme : Comparison Based on Lid-driven Cavity flow Computations (HYBRID기법과 QUICKER기법 : 공동 유동의 계산 특성 비교)

  • 조성호;강인준;박승오
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1640-1647
    • /
    • 1993
  • The numerical diffusion arising from streamline-to-grid skewness produces a deteriorating effect on the numerical accuracy. The QUICKER scheme to reduce the numerical diffusion requires more computational effort than the HYBRID scheme. This paper deals with the relative computational efficiencies of adopting QUICKER scheme with a coarser grid system and of adopting HYBRID scheme with a denser grid system. Laminar driven cavity flow with Re=400, 1000 is used as a test problem. It is found that QUICKER scheme with a coarser grid system is more efficient than the HYBRID scheme with a denser grid system.