• Title/Summary/Keyword: LiClO₄

Search Result 328, Processing Time 0.058 seconds

Corrosion Behavior of Ni 200 and Ni-base Alloys in Hot Lithium Molten salt (고온 리튬용융염에서 Ni 200 및 Ni-base 합금의 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Yun Ki-Seok;Park Seung-Won
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.251-259
    • /
    • 2004
  • In the development of the advanced spent fuel management process based on the molten salt technology, it is essential to choose the optimum material for the process equipment handling molten salt. Corrosion behavior of Ni 200 and Ni-base alloys in molten salt of LiCl-$Li_2$O under oxidation atmosphere was investigated in the temperature range of $650~800^{\circ}C$ for 24~312 hrs. The order of corrosion rate was Ni 200 > Inconel 690 > Inconel 601 > Inconel 600. Inconel 600 alloy showed the highest corrosion resistance among the examined alloys, but Ni 200 exhibited the highest corrosion rate. Corrosion products of Inconel 600 and Inconel 601 were $Cr_2$$O_3$ and $NiFe_2$$O_4$. In case of Inconel 690, a single layer of $CrO_2$$O_3$ was formed in the early stage of corrosion and an outer layer of $NiFe_2$O$_4$ and inner layer of $Cr_2$$O_3$ were formed with increase of corrosion time. Inconel 600 showed local corrosion behavior and Inconel 601, 690 showed uniform corrosion behavior.

Development of a Mass Transfer Model and Its Application to the Behavior of the Cs, Sr, Ba, and Oxygen ions in an Electrolytic Reduction Process for SF

  • Park ByungHeung;Kang Dae-Seung;Seo Chung-Seok;Park Seong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.85-93
    • /
    • 2005
  • Isotopes of alkali and alkaline earth metals (AM and AEM) are the main contributors to the heat load and the radiotoxicity of spent fuel (SF) . These components are separated from the SF and dissolved in a molten LiCl in an electrolytic reduction process. A mass transfer model is developed to describe the diffusion behavior of Cs, Sr, and Ba in the SF into the molten salt. The model is an analytical solution of Fick's second law of diffusion for a cylinder which is the shape of a cathode in the electrolytic reduction process. And the model is also applied to depict the concentration profile of the oxygen ion which is produced by the electrolysis of Li$_{2}$O. The regressed diffusion coefficients of the model correlating the experimentally measured data are evaluated to be greater in the order of Ba, Cs, and Sr for the metal ions and the diffusion of the oxygen ion is slower than the metal ions which implies that different mechanisms govern the diffusion of the metal ions and the oxygen ions in a molten LiCl.

  • PDF

Analysis of the Redox Reaction for Polypyrrole Thin Film by Using a Quartz Crystal Analyzer (수정진동자 분석기(QCA)를 이용한 폴리피롤 박막의 산화-환원반응 해석)

  • Chang, Sang-Mok;Kim, Jong-Min;Park, Ji-Sun;Son, Tae-Il;Hiroshi, Muramatsu
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.44-51
    • /
    • 1998
  • In this work, the in-situ viscoelastic characteristics of electropolymerized polypyrrole (PPy) thin film were investigated in the electrolyte solutions of $NaClO_4$, $LiClO_4$, and $KClO_4$ by using quartz crystal analyzer (QCA). One side of quartz crystal was used as a working electrode mounted in a special fabricated QCA electrochemical ceil. The resonant frequency and resonant resistance diagram (F-R diagram) was used to interpret the viscoelastic characteristics of Pby thin film and compared with AFM photograph. The resonant frequency, resonant resistance, and current were measured to analyze the redox reaction behaviors when the cyclic voltammetry was performed using AT-cut quartz crystal electrode coated with galvanostatically polymerized Ppy film. The result suggests that the Ppy film polymerized onto the crystal behaves as a rigid elastic layer at the initial stage of electropolymerization, while the film becomes a viscoelastic layer the polymerization proceeds further. At the same time, the film thickness increases and some morphological changes take place due to the penetration of electrolyte solution into the film. These phenomena take place when cyclic voltammetry was performed using different electrolyte solution compared with polymerization process.

  • PDF

Behavior of $Li^{+}$ in PAN/PVDF based Polymer Electrolyte for Lithium Polymer Battery (리튬 폴리머전지용 PAN/PVDF계 고분자 전해질의 리튬 이온 거동)

  • 이재안;김상기;김종욱;구할본;박계춘
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.540-543
    • /
    • 2000
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li polymer battery. The temperature dependence of conductivity, impedance spectroscopy and electrochemical properties of PAN/PVDF electrolytes as a function of a mixed ratio were reported for PAN/PVDF based polymer electrolyte films, which were prepared by thermal gellification method of preweighed PAN/PVDF, plasticizer and Li salt. The conductivity of PAN/PVDF electrolytes was $10^{-3}$S/cm. $PAN_{10}$$PVDF_{10}$$LiClO_4$$PC_{5}$$EC_{5}$ electrolyte has the better conductivity compared to others. The interfacial resistance behavior between the lithium electrode and PAN/PVDF based polymer electrolyte has also been investigated and compare with that between the lithium electrode and the PAN/PVDF based polymer electrolyte.

  • PDF

Effect of Counter Anions on Solid Electrolyte Interphase Formation on Graphite Electrodes in Propylene Carbonate-based Electrolyte Solutions

  • Song, Hee-Youb;Kim, Seong In;Nogales, Paul Maldonado;Jeong, Soon-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.55-60
    • /
    • 2019
  • Herein, the effect of counter anions on the formation of a solid electrolyte interphase (SEI) in a propylene carbonate (PC)-based electrolyte solution was investigated. Although the reversible capacities were different, reversible intercalation and de-intercalation of lithium ions occurred in the graphite negative electrode in the PC-based electrolyte solutions containing 1 M $LiClO_4$, $LiPF_6$, $LiBF_4$, and $LiCF_3SO_3$ at low temperature ($-15^{\circ}C$). This indicated that the surface films acted as an effective SEI to suppress further co-intercalation and decomposition reactions at low temperature. However, the SEIs formed at the low temperature were unstable in 1 M $LiPF_6$ and $LiBF_4/PC$ at room temperature ($25^{\circ}C$). On the other hand, increasing reversible capacity was confirmed in the case of $LiCF_3SO_3/PC$ at room temperature, because the SEI formed at the low temperature was still maintained. These results suggest that counter anions are an important factor to consider for the formation of effective SEIs in PC-based electrolyte solutions.

Synthesis of Lithium Manganese Oxide by a Sol-Gel Method and Its Electrochemical Behaviors (졸-겔 방법에 의한 LiMn2O4의 합성 및 전기화학적 거동)

  • Jeong, Euh-Duck;Moon, Sung-Wook;Lee, Hak-Myoung;Won, Mi-Sook;Yoon, Jang-Hee;Park, Deog-Su;Shim, Yoon-Bo
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.229-235
    • /
    • 2003
  • A precursor of lithium manganese oxide was synthesized by mixing $(CH_3)_2CHOLi\;with\;Mn(CH_3COO)_2{\cdot}4H_2O$ in ethanol using a sol-gel method, then heat-treated at $400^{\circ}C\;and\;800^{\circ}C$ in air atmosphere. The condition of heat treatment was determined by thermogravimetric analysis/differential thermogravimetric analysis (TGA/DTA). The characterization of the lithium manganese oxide was done by X-ray diffraction (XRD) spectra and scanning electron microscopy (SEM). The electrochemical characteristics of lithium manganese oxide electrode for lithium ion battery were measured by cyclic voltammetry (CV), chronoamperometry and AC impedance method using constant charge/discharge process. The electrochemical behaviors of the electrode have been investigated in a 1.0M $LiClO_4/propylene$ carbonate electrolyte solution. The diffusivity of lithium ions, $D^+\;_{Li}\;^+$, as determined by AC impedance technique was $6.2\times10^{-10}cm^2s^{-1}$.

Preparation and Characterization of Plasticized Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) Graft Copolymer Electrolyte Membranes (가소화된 Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) 가지형 고분자 전해질막 제조 및 분석)

  • Seo, Jin-Ah;Koh, Jong-Kwan;Koh, Joo-Hwan;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.222-228
    • /
    • 2011
  • Poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer was synthesized via atom transfer radical polymerization (ATRP) and used as an electrolyte for electrochromic device. Plasticized polymer electrolytes were prepared by the introduction of propylene carbonate (PC)/ethylene carbonate (EC) mixture as a plasticizer. The effect of salt was systematically investigated using lithium tetrafluoroborate ($LiBF_4$), lithium perchlorate ($LiClO_4$), lithium iodide (LiI) and lithium bistrifluoromethanesulfonimide (LiTFSI). Wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) measurements showed that the structure and glass transition temperature ($T_g$) of polymer electrolytes were changed due to the coordinative interactions between the ether oxygens of POEM and the lithium salts, as supported by FT-IR spectroscopy. Transmission electron microscopy (TEM) showed that the microphase-separated structure of PVC-g-POEM was not greatly disrupted by the introduction of PC/EC and lithium salt. The plasticized polymer electrolyte was applied to the electrochromic device employing poly(3-hexylthiophene) (P3HT) conducting polymer.

Preparation and Electrochemical Properties of Polymeric Composite Electrolytes Containing Organic Clay Materials (Organic Clay가 첨가된 고분자 복합 전해질의 제조 및 전기화학적 성질)

  • Kim, Seok;Hwang, Eun-Ju;Lee, Jea-Rock;Kim, Hyung-Il;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.297-301
    • /
    • 2007
  • In this work, polymer/(layered silicate) nanocomposites (PLSN) based on poly (ethylene oxide) (PEO), ethylene carbonate (EC) as a plasticizer, lithium salt ($LiClO_4$), and sodium montmorillonite ($Na^+-MMT$) or organic montmorillonite (organic MMT) clay were fabricated. And the effects of organic MMT on the polymer matrix were investigated as a function of ionic conductivity. For the application to electrolytes an Li batteries, polymer electrolytes containing the organic nanoclays were used in this work. As a result, the spacing between layers and hydrophobicity of the organic nanoclays were increased, affecting on the exfoliation behaviors of the MMT layers in clay/PEO nanocomposites. From ion-conductivity results, the organic-MMT showed higher values than those of $Na^+-MMT$, and the MMT-20A sample that was treated by methyl dihydrogenated tallow ammonium, showed the highest conductivity in this system.

Effect of Si Content and RE Addition on Molten Salt Corrosion and High Temperature Oxidation of the Austenite Alloys (오스테나이트 합금의 용융염부식 및 고온산화에 미치는 Si 농도와 RE 첨가의 영향)

  • Jo, Su-Haeng;Jang, Jun-Seon;O, Seung-Cheol;Sin, Yeong-Jun;Park, Seong-Won
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.3-9
    • /
    • 2002
  • The corrosion behavior of alloys in a molten salt was investigated along with the oxidation characteristics in the air. The basic composition of alloys in the study was Fe-25Ni-7Cr with Si and RE(rare-earth metal) as additives. The corrosion rate of the alloys was low in a molten salt of LiCl while the rate was high in the mixed molten salt of LiCl and $Li_2O$. When Si is added to the base alloy of Fe-25Ni-7Cr, corrosion resistance was improved as the Si content is increased up to 3%, however, it was observed that the corrosion resistance was getting worse as the Si content is increased. The base alloy with 2.43% of Si and 0.9% of RE(KSA-65), showed higher corrosion rate compared to that of KSA-63 alloy with an equivalent amount of only Si. The corrosion resistance of KSA-65 was similar to that of the base alloy(KSA-60). The oxidation resistance of KSA-65 alloy was greatly increased even at $850^{\circ}C$ for a long term exposure.

Cyanide- and Phenoxo-Bridged Heterobimetallic Fe(III)-Mn(III) Coordination Polymer: Synthesis, Crystal Structures and Magnetic Properties

  • Zhang, Daopeng;Kong, Lingqian;Li, Yueyun;Wang, Ping;Chen, Xia
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2684-2688
    • /
    • 2014
  • Two two-dimensional cyanide- and phenoxo-bridged heterometallic M(II)-Mn(III) (M = Ni, Pd) coordination polymers $\{[Mn(saltmen)]_4[Ni(CN)_4]\}(ClO_4)_2{\cdot}CH_3OH{\cdot}H_2O$ (1) and $\{[Mn(saltmen)]_4[Pd(CN)_4]\}(ClO_4)_2{\cdot}CH_3CN{\cdot}H_2O$ (2) ($saltmen^{2-}$ = N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneaminato)dianion) have been obtained by using $K_2[M(CN)_4]$ as building blocks and a salen-tpye Schiff-base manganese(III) compound as assembling segment. Single X-ray analysis reveals their isostrutural cyanide-bridged $MMn_4$ pentanuclear cationic structure. The four Schiff base manganese units of the pentanuclear entity are self-complementary through the phenoxo oxygen atoms from the neighboring complex, therefore forming cyanide- and phenoxo-bridged 2D sheet-like structure. Investigation over magnetic susceptibilities reveals the overall ferromagnetic coupling between the adjacent Mn(III) ions bridged by the phenoxo oxygen atoms with J = 2.13 and $2.21cm^{-1}$ for complexes 1 and 2, respectively.