DOI QR코드

DOI QR Code

Synthesis of Lithium Manganese Oxide by a Sol-Gel Method and Its Electrochemical Behaviors

졸-겔 방법에 의한 LiMn2O4의 합성 및 전기화학적 거동

  • 정의덕 (한국기초과학지원연구원 부산분소) ;
  • 문성욱 (부산대학교 자연과학대학 화학과) ;
  • 이학명 (부산대학교 자연과학대학 화학과) ;
  • 원미숙 (한국기초과학지원연구원 부산분소) ;
  • 윤장희 (한국기초과학지원연구원 부산분소) ;
  • 박덕수 (부산대학교 자연과학대학 화학과) ;
  • 심윤보 (부산대학교 자연과학대학 화학과)
  • Published : 2003.11.01

Abstract

A precursor of lithium manganese oxide was synthesized by mixing $(CH_3)_2CHOLi\;with\;Mn(CH_3COO)_2{\cdot}4H_2O$ in ethanol using a sol-gel method, then heat-treated at $400^{\circ}C\;and\;800^{\circ}C$ in air atmosphere. The condition of heat treatment was determined by thermogravimetric analysis/differential thermogravimetric analysis (TGA/DTA). The characterization of the lithium manganese oxide was done by X-ray diffraction (XRD) spectra and scanning electron microscopy (SEM). The electrochemical characteristics of lithium manganese oxide electrode for lithium ion battery were measured by cyclic voltammetry (CV), chronoamperometry and AC impedance method using constant charge/discharge process. The electrochemical behaviors of the electrode have been investigated in a 1.0M $LiClO_4/propylene$ carbonate electrolyte solution. The diffusivity of lithium ions, $D^+\;_{Li}\;^+$, as determined by AC impedance technique was $6.2\times10^{-10}cm^2s^{-1}$.

리튬이온전지 양극재료로서 리튬막간계 산화물을 졸겔 방법으로 전구물질을 합성하여 $400^{\circ}C$$800^{\circ}C$에서 열처리하여 합성하였다. 출발물질로는 $(CH_3)_2CHOLi$$Mn(CH_3COO)_2\;{\cdot}4H_2O$를 사용하였다 열분석 측정을 통해 열처리 조건을 정하였다. 또한 합성된 물질은 X-선 회절분석으로 구조를 확인하였으며 형상 및 입자의 크기는 주사전자현미경으로 측정하였다. 전기화학적 특성은 1.0M $LiClO_4/propylene\;carbonate(PC)$ 전해액 조건에서 순환전압전류법, chronoamperometry, 교류 임피던스 법 및 정전류 충$\cdot$방전 특성을 조사하였다. 교류 임피던스 법으로 확산계수를 측정한 결과 $6.2\times10^{-10}cm^2s^{-1}$를 나타내었다.

Keywords

References

  1. T. Nagaura, in; Proc. 5th Intern. Seminar on Lithium BatteryTechnotogy and Apptications, DeerSeld Beach, FL; March 5-7(1990)
  2. T. Nagaura, JEC Battery Newstetter, 2, 17 (1991)
  3. Y. Kaminaga, T. Tatsuma, T. Sotomura, and N. Oyama, J.Etectmchem. Soc., 142, 147 (1995)
  4. Y. Sakurai, and J. Yamaki, J. Etectiochem. Soc,. 135, 791 (1988) https://doi.org/10.1149/1.2095773
  5. A. Trancgant, J. M. Blengino, J. Farcy and R. Messina, J.EIectmchem. Soc., 139, 1243 (1992) https://doi.org/10.1149/1.2069391
  6. T.Nohma, I. Nakane, Y. Fujita, Y. Yammamoto, and K. Tei-aji, SanyoTechnicat Review, 20, 69 (1993)
  7. J. M. Tarascon, and D. Guyomard, J. Etectmchem. Soc., 138, 2864(1991) https://doi.org/10.1149/1.2085331
  8. N. Furukawa, T. Nohma, K. Teraji, I. Nakane, and T. Saito, DenkiKagaku, 57, 533 (1989)
  9. N. Miyamoto, H. Naito and K. Takeshima, J. Power. Source, 59, 992(1991)
  10. A. R. Armstrong and P. Bmce, Nature, 381, 499 (1996) https://doi.org/10.1038/381499a0
  11. D. Guyomard and J. M. Tarascon, J. Etectrochem. Soc., 139, 937(1992) https://doi.org/10.1149/1.2069372
  12. J. M. Tarascon and D. Guyomard, J. Etectivchem. Soc., 138, 2864 (1991) https://doi.org/10.1149/1.2085331
  13. S. Bach and J. P. Pereira-Ramos, J. Etectmchem. Soc., 143, 3429 (1996) https://doi.org/10.1149/1.1837232
  14. P. Barboux, J. M. Tarascon and F. K. Shokoohi, J. Sotid State Chem.,94, 185 (1991) https://doi.org/10.1016/0022-4596(91)90231-6
  15. H. Huang and P. G. Bruce, J. Etectrochem. Soc., 141, L106 (1994) https://doi.org/10.1149/1.2055168
  16. Z. Jiang and K. M. Abraham, J. Electrochem. Soc., 143, 1591 (1996) https://doi.org/10.1149/1.1836684
  17. Y. Xia and M. Yoshio, J. Etectrochem. Soc., 143, 825 (1996) https://doi.org/10.1149/1.1836544
  18. W. Liu, G. C. Fanington, F. Chaput, and B. Dunn, J. Etectivchem.Soc., 143, 879 (1996) https://doi.org/10.1149/1.1836552
  19. Su-Il R, Young-Min C., and In-Djo J., J. Power. Source, 68, 593 (1997) https://doi.org/10.1016/S0378-7753(96)02635-3
  20. Dong H. J., Young J. S., and Seung M. O., J. Etectmchem. Soc., 143,2204 (1996) https://doi.org/10.1149/1.1836981
  21. M. H. Rossouw, A. de Kock, and M. M. Thackeray, Mat. Res. Butt.,25, 173 (1990) https://doi.org/10.1016/0025-5408(90)90043-2
  22. Y. J. Park, J. G. Kim, H. T. Chung and H. G. Kim, Soitid Statelonics, 130, 203 (2000)
  23. S. H. Park, K. S. Park, S. S. Moon, Y. K. Sun and K. S. Nahm, J.Power. Source, 92, 244 (2001) https://doi.org/10.1016/S0378-7753(00)00545-0
  24. B. J. Hwang, R. Santhanam, D. G. Liu and Y. W. Tsai, J. Power.Source, 102, 326 (2001) https://doi.org/10.1016/S0378-7753(01)00769-8
  25. Y. M. Hon, K. Z. Fung and M. H. Hon, J. Euro. Ceramic Soc., 21,515 (2001) https://doi.org/10.1016/S0955-2219(00)00217-X
  26. Y. S. Lee, Y. K. Sun and K. S. Nahm, Soitid State lonics, 109, 285(1998) https://doi.org/10.1016/S0167-2738(98)00085-X
  27. S. W. Kim and S. I. Pyun, Etectrochimica Acta, 47, 2843 (2002) https://doi.org/10.1016/S0013-4686(02)00173-1
  28. J. C. Hunter and F. B. Tudron, Proc. 166th Etectrochem. Soc. Meeting, New Orleans, 84-2, 110 (1984)
  29. E. D. Jeong, M.-S. Won and Y. B. Shim, J. Power. Source, 70, 70(1998) https://doi.org/10.1016/S0378-7753(97)02667-0