DOI QR코드

DOI QR Code

Effect of Counter Anions on Solid Electrolyte Interphase Formation on Graphite Electrodes in Propylene Carbonate-based Electrolyte Solutions

  • Song, Hee-Youb (Department of Chemical Engineering, Soonchunhyang University) ;
  • Kim, Seong In (Energy Storage System R&D Center, Korea Automotive Technology Institute) ;
  • Nogales, Paul Maldonado (Department of Chemical Engineering, Soonchunhyang University) ;
  • Jeong, Soon-Ki (Department of Chemical Engineering, Soonchunhyang University)
  • Received : 2018.08.02
  • Accepted : 2018.09.08
  • Published : 2019.03.31

Abstract

Herein, the effect of counter anions on the formation of a solid electrolyte interphase (SEI) in a propylene carbonate (PC)-based electrolyte solution was investigated. Although the reversible capacities were different, reversible intercalation and de-intercalation of lithium ions occurred in the graphite negative electrode in the PC-based electrolyte solutions containing 1 M $LiClO_4$, $LiPF_6$, $LiBF_4$, and $LiCF_3SO_3$ at low temperature ($-15^{\circ}C$). This indicated that the surface films acted as an effective SEI to suppress further co-intercalation and decomposition reactions at low temperature. However, the SEIs formed at the low temperature were unstable in 1 M $LiPF_6$ and $LiBF_4/PC$ at room temperature ($25^{\circ}C$). On the other hand, increasing reversible capacity was confirmed in the case of $LiCF_3SO_3/PC$ at room temperature, because the SEI formed at the low temperature was still maintained. These results suggest that counter anions are an important factor to consider for the formation of effective SEIs in PC-based electrolyte solutions.

Keywords

E1JTC5_2019_v10n1_55_f0001.png 이미지

Fig. 1. Potential profiles of natural graphite (NG-7) in 1 M LiClO4/ (a) EC+DEC (1:1, vol. ratio) and (b) PC at low temperature (-15°C). C-rate: 0.1 C. The inset is a magnified view of the potential profile.

E1JTC5_2019_v10n1_55_f0002.png 이미지

Fig. 2. Potential profiles of natural graphite (NG-7) in PCbased electrolyte solutions containing 1 M (a) LiPF6, (b) LiBF4, and (c) LiCF3SO3 at low temperature (-15°C). Crate: 0.1 C. The inset is a magnified view of the potential profile.

E1JTC5_2019_v10n1_55_f0003.png 이미지

Fig. 3. Potential profiles of natural graphite (NG-7) in PCbased electrolyte solutions containing 1 M (a) LiPF6, (b) LiBF4, and (c) LiCF3SO3 at room temperature (25°C) after five cycles at -15°C. C-rate: 0.1 C. The inset is a magnified view of the potential profile.

E1JTC5_2019_v10n1_55_f0004.png 이미지

Fig. 4. Raman spectra of the PC-based electrolyte solutions containing 1 M (a) LiPF6, (b) LiBF4, and (c) LiCF3SO3 at 25 and -15°C.

References

  1. E. Peled, J. Electrochem. Soc., 1979, 126(12), 2047-2051. https://doi.org/10.1149/1.2128859
  2. J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, J. Power Sources, 1995, 54(2), 228-231. https://doi.org/10.1016/0378-7753(94)02073-C
  3. S.-K. Jeong, M. Inaba, T. Abe, and Z. Ogumi, J. Electrochem. Soc., 2001, 148(9), A989-A993. https://doi.org/10.1149/1.1387981
  4. D. Aurbach, M. Koltypin, and H. Teller, Langmuir, 2002, 18(12), 9000-9009. https://doi.org/10.1021/la020306e
  5. Z. Ogumi, and M. Inaba, Bull. Chem. Soc. Jpn., 1998, 71(3), 521-534. https://doi.org/10.1246/bcsj.71.521
  6. T. Ohzuku, Y. Iwakoshi, and K. Sawai, J. Electrochem. Soc., 1993, 140(9), 2490-2498. https://doi.org/10.1149/1.2220849
  7. M. Inaba, H. Yoshida, Z. Ogumi, T. Abe, Y. Mizutani, and M. Asano, J. Electrochem. Soc., 1995, 142(1), 20-26. https://doi.org/10.1149/1.2043869
  8. D. Aurbach, and Y. Ein-Eli, J. Electrochem. Soc., 1995, 142(6), 1746-1752. https://doi.org/10.1149/1.2044188
  9. K. Xu, Chem. Rev., 2004, 104(10), 4303-4417. https://doi.org/10.1021/cr030203g
  10. S.S. Zhang, K. Xu, J.L. Allen, T.R. Jow, J. Power Sources, 2002, 110(1), 216-221. https://doi.org/10.1016/S0378-7753(02)00272-0
  11. M. Inaba, Z. Siroma, Y. Kawatate, A. Funabiki, and Z. Ogumi, J. Power Sources, 1997, 68(2), 221-226. https://doi.org/10.1016/S0378-7753(96)02555-4
  12. D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, Electrochim. Acta, 1999, 45(1-2), 67-86. https://doi.org/10.1016/S0013-4686(99)00194-2
  13. G.-C. Chung, H.-J. Kim, S.-I. Yu, S.-H. Jun, J.-W. Choi, and M.-H. Kim, J. Electrochem. Soc., 2000, 147(12), 4391-4398. https://doi.org/10.1149/1.1394076
  14. H.-Y. Song, and S.-K. Jeong, J. Power Sources, 2018, 373, 110-118. https://doi.org/10.1016/j.jpowsour.2017.11.015
  15. S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, Electrochem. Solid-State Lett., 2003, 6(1), A13-A15. https://doi.org/10.1149/1.1526781
  16. S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, J. Power Sources, 2008, 175(1), 540-546. https://doi.org/10.1016/j.jpowsour.2007.08.065
  17. S.-K. Jeong, H.-Y. Song, S. I. Kim, T. Abe, W. S. Jeon, R.-Z Yin, and Y. S. Kim, Electrochem. Commun., 2013, 31(24), 24-27. https://doi.org/10.1016/j.elecom.2013.02.019
  18. Y.-S. Kim, and S.-K. Jeong, J. Spectrosc., 2015, 2015.
  19. Y. Yamada, M. Yaegashi, T. Abe, and A. Yamada, Chem. Commun., 2013, 49(95), 11194-11196. https://doi.org/10.1039/c3cc46665e
  20. P. Novak, F. Joho, R. Imhof, J.-C. Panitz, and O. Haas, J. Power Sources, 1999, 81, 212-216. https://doi.org/10.1016/S0378-7753(99)00119-6
  21. S.-K. Jeong, M. Inaba, T. Abe, and Z. Ogumi, J. Electrochem. Soc., 2001, 148(9), A989-A993. https://doi.org/10.1149/1.1387981
  22. W. A. Henderson, J. Phys. Chem. B, 2006, 110(26), 13177-13183. https://doi.org/10.1021/jp061516t