DOI QR코드

DOI QR Code

Effect of Si Content and RE Addition on Molten Salt Corrosion and High Temperature Oxidation of the Austenite Alloys

오스테나이트 합금의 용융염부식 및 고온산화에 미치는 Si 농도와 RE 첨가의 영향

  • Published : 2002.01.01

Abstract

The corrosion behavior of alloys in a molten salt was investigated along with the oxidation characteristics in the air. The basic composition of alloys in the study was Fe-25Ni-7Cr with Si and RE(rare-earth metal) as additives. The corrosion rate of the alloys was low in a molten salt of LiCl while the rate was high in the mixed molten salt of LiCl and $Li_2O$. When Si is added to the base alloy of Fe-25Ni-7Cr, corrosion resistance was improved as the Si content is increased up to 3%, however, it was observed that the corrosion resistance was getting worse as the Si content is increased. The base alloy with 2.43% of Si and 0.9% of RE(KSA-65), showed higher corrosion rate compared to that of KSA-63 alloy with an equivalent amount of only Si. The corrosion resistance of KSA-65 was similar to that of the base alloy(KSA-60). The oxidation resistance of KSA-65 alloy was greatly increased even at $850^{\circ}C$ for a long term exposure.

Keywords

References

  1. F.J. Kohl, G.J. Santoro, C.A. Stearns, G.C. Fryburg and D.E. Rosner, J. Electrochem. Soc., 126, 1054 (1979) https://doi.org/10.1149/1.2129059
  2. W.T. Reid, R.C. Corey and B.J. Cross, Trans. ASME, 67, 279 (1945)
  3. E.L. Simons, G.V. Browning and H.A. Liebhafsky, Corrosion, 11,505 (1955)
  4. N.S. Bornstein and M.A. DeCrescente, Trans. Met. Soc. AIME, 245, 583 (1969)
  5. N.S. Bornstein and M.A. DeCrescente, Met. Trans., 2, 2875 (1971) https://doi.org/10.1007/BF02813266
  6. J.A. Goebel and F.S. Pettit, Met. Trans., 1, 1943 (1970) https://doi.org/10.1007/BF02642794
  7. J.A. Goebel and F.S. Pettit and G. W. Goward. Met. Trans., 4, 261 (1973) https://doi.org/10.1007/BF02649626
  8. D.K. Gupta and R.A. Rapp, J. Electrochem. Soc., 127, 2194 (1980) https://doi.org/10.1149/1.2129374
  9. D.K. Gupta and R.A. Rapp, J. Electrochem. Soc., 127, 2656 (1980) https://doi.org/10.1149/1.2152132
  10. Y.S. Zhang and R.A. Rapp, J. Electrochem. Soc., 132, 734 (1985) https://doi.org/10.1149/1.2113943
  11. Y.S. Zhang and R.A. Rapp, J. Electrochem. Soc., 132, 2498 (1985) https://doi.org/10.1149/1.2113608
  12. Y.S. Zhang, J. Electrochem. Soc., 133, 655 (1986) https://doi.org/10.1149/1.2108648
  13. S.H. Cho, S.C. Park, J.S. Zhang, Y.J. Shin and H.S. Park, Kor. J. Mater. Res., 9, 211 (1999)
  14. S.H. Cho, S.C. Park, J.S. Zhang, Y.J. Shin and H.S. Park Kor. J. Mater. Res., 9, 556 (1999)
  15. S.H. Cho, J.S. Zhang, M.S. Jeong, S.C. Oh and Y.J. Shin, Kor. J. Mater. Res., 9, 985 (1999)
  16. S.H. Cho, J.S. Zhang, S.S. Hong, Y.J. Shin and H.S. Park, Kor. J. Mater. Res., 10,471 (2000)
  17. S. Seal, S.K. Bose and S. K. Roy, Oxid. Met., 41,139, (1994) https://doi.org/10.1007/BF01196647
  18. Y. Saito, B. Onay and T. Maruyama, J. Phys. N 3,217, (1993) https://doi.org/10.1088/0305-4608/3/11/001
  19. F.H. Sttot, G.C. Wood, J. Stringer, Oxid, Met., 8, 113, (1995) https://doi.org/10.1007/BF01046725
  20. P.Y. Hou and J. Stringer, Oxid. Met., 33,357, (1990) https://doi.org/10.1007/BF00666805
  21. R.A. Rapp and Y .S. Zhang, Molten Salts Forum, 5-6, 25 (1998)
  22. 松木一弘, 耐熱金屬材料第123委員會硏究報告, 33(1), 105, (1992)
  23. F.J. Perez, E. Otero, M. P. Hierro, C. Gomez, F. Pedraza, J. L. de Segovia and E. Roman, Surface and Coatings Tech. 108-109, 127,(1998) https://doi.org/10.1016/S0257-8972(98)00685-9