• 제목/요약/키워드: Level switch

검색결과 397건 처리시간 0.027초

Performance Analysis of a Novel Reduced Switch Cascaded Multilevel Inverter

  • Nagarajan, R.;Saravanan, M.
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.48-60
    • /
    • 2014
  • Multilevel inverters have been widely used for high-voltage and high-power applications. Their performance is greatly superior to that of conventional two-level inverters due to their reduced total harmonic distortion (THD), lower switch ratings, lower electromagnetic interference, and higher dc link voltages. However, they have some disadvantages such as an increased number of components, a complex pulse width modulation control method, and a voltage-balancing problem. In this paper, a novel nine-level reduced switch cascaded multilevel inverter based on a multilevel DC link (MLDCL) inverter topology with reduced switching components is proposed to improve the multilevel inverter performance by compensating the above mentioned disadvantages. This topology requires fewer components when compared to diode clamped, flying capacitor and cascaded inverters and it requires fewer carrier signals and gate drives. Therefore, the overall cost and circuit complexity are greatly reduced. This paper presents modulation methods by a novel reference and multicarrier based PWM schemes for reduced switch cascaded multilevel inverters (RSCMLI). It also compares the performance of the proposed scheme with that of conventional cascaded multilevel inverters (CCMLI). Simulation results from MATLAB/SIMULINK are presented to verify the performance of the nine-level RSCMLI. Finally, a prototype of the nine-level RSCMLI topology is built and tested to show the performance of the inverter through experimental results.

Hierarchical Multiplexing Interconnection Structure for Fault-Tolerant Reconfigurable Chip Multiprocessor

  • Kim, Yoon-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권4호
    • /
    • pp.318-328
    • /
    • 2011
  • Stage-level reconfigurable chip multiprocessor (CMP) aims to achieve highly reliable and fault tolerant computing by using interwoven pipeline stages and on-chip interconnect for communicating with each other. The existing crossbar-switch based stage-level reconfigurable CMPs offer high reliability at the cost of significant area/power overheads. These overheads make realizing large CMPs prohibitive due to the area and power consumed by heavy interconnection networks. On other hand, area/power-efficient architectures offer less reliability and inefficient stage-level resource utilization. In this paper, I propose a hierarchical multiplexing interconnection structure in lieu of crossbar interconnect to design area/power-efficient stage-level reconfigurable CMP. The proposed approach is able to keep the reliability offered by the crossbar-switch while reducing the area and power overheads. Experimental results show that the proposed approach reduces area by up to 21% and power by up to 32% when compared with the crossbar-switch based interconnection network.

Tolerance Control for the Inner Open-Switch Faults of a T-Type Three-Level Rectifier

  • Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1157-1165
    • /
    • 2014
  • The T-type topology is a three-level topology that has an advantage in terms of its number of switching device and its efficiency when compared to the neutral-point clamped (NPC)-type topology. With the recent increase in the usage of the T-type topology, the interest in its reliability has also increased. Therefore, a tolerance control for a T-type rectifier is necessary to improve the reliability of applications when an open-switch fault occurs. NPC-type rectifiers cannot eliminate input current distortion completely. However, the T-type rectifier is able to restore distorted current. In this paper, a tolerance control for the $S_{x2}$ and $S_{x3}$ open-switch faults of a T-type rectifier is proposed where it is advantageous in terms of efficiency when compared with other tolerance controls. The performance of the proposed tolerance control is verified through simulation and experimental results.

Reliability Evaluation of a Distribution System with wind Turbine Generators Based on the Switch-section Partitioning Method

  • Wu, Hongbin;Guo, Jinjin;Ding, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.575-584
    • /
    • 2016
  • Considering the randomness and uncertainty of wind power, a reliability model of WTGs is established based on the combination of the Weibull distribution and the Markov chain. To analyze the failure mode quickly, we use the switch-section partitioning method. After defining the first-level load zone node, we can obtain the supply power sets of the first-level load zone nodes with each WTG. Based on the supply sets, we propose the dynamic division strategy of island operation. By adopting the fault analysis method with the attributes defined in the switch-section, we evaluate the reliability of the distribution network with WTGs using a sequential Monte Carlo simulation method. Finally, using the IEEE RBTS Bus6 test system, we demonstrate the efficacy of the proposed model and method by comparing different schemes to access the WTGs.

Effects of Cu impurity on the switching characteristics of the optically controlled bistable semiconductor switches (광제어 쌍안정 반도체 스위치에서 구리 불순물이 스위치특성에 미치는 영향)

  • 고성택
    • Electrical & Electronic Materials
    • /
    • 제7권3호
    • /
    • pp.213-219
    • /
    • 1994
  • Cu compensated Si doped GaAs (GaAs :Si:Cu has been chosen as the switch material. The GaAs material has been characterized by DLTS(Deep Level Transient Spectroscopy) technique and the obtained data were used in the computer simulation. Simulation studies are performed on several GaAs switch systems, composed of different densities of Cu, to investigate the influence of deep traps in the switch systems. The computed results demonstrates important aspect of the switch, the existence of two stable states and fast optical quenching. An important parameter optimum Cu density for the switch are also determined.

  • PDF

Studies on MEMS Inertial Switch Applicable to the Ignition SAU(Safe-Arm-Unit) of Propulsion System (추진기관 점화안전장치에 적용 가능한 MEMS 관성 스위치 연구)

  • Jang, Seung-Gyo;Jung, Hyung-Gyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.126-129
    • /
    • 2010
  • MEMS(micro electro-mechanical systems) inertial switch which is applicable to the ignition Safe-Arm- Unit of propulsion system is devised. The MEMS inertial switch is designed according to the general design procedure for conventional mechanical elements. Unlikely conventional MEMS accelerometer, threshold inertial switching mechanism is adopted which makes a MEMS element an abrupt switching in a certain acceleration level. By comparing the design data and test results of the specimen a small discrepancy in switching acceleration level is found which is presumably due to the nonlinear characteristics of the beam spring and the flexure hinge which are the main parts of the MEMS inertial switch.

  • PDF

Identification of Open-Switch and Short-Switch Failure of Multilevel Inverters through DWT and ANN Approach using LabVIEW

  • Parimalasundar, E.;Vanitha, N. Suthanthira
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2277-2287
    • /
    • 2015
  • In recent times, multilevel inverters are given high priority in many large industrial drive applications. However, the reliability of multilevel inverters are mainly affected by the failure of power electronic switches. In this paper, open-switch and short-switch failure of multilevel inverters and its identification using a high performance diagnostic system is discussed. Experimental and simulation studies were carried out on five level cascaded H-Bridge multilevel inverter and its output voltage waveforms were analyzed at different switch fault cases and at different modulation index values. Salient frequency domain features of the output voltage signal were extracted using the discrete wavelet transform multi resolution signal decomposition technique. Real time application of the proposed fault diagnostic system was implemented through the LabVIEW software. Artificial neural network was trained offline using the Matlab software and the resultant network parameters were transferred to LabVIEW real time system. In the proposed system, it is possible to precisely identify the individual faulty switch (may be due to open-switch (or) short-switch failure) of multilevel inverters.

Three-Level SEPIC with Improved Efficiency and Balanced Capacitor Voltages

  • Choi, Woo-Young;Lee, Seung-Jae
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.447-454
    • /
    • 2016
  • A single-ended primary-inductor converter (SEPIC) features low input current ripple and output voltage up/down capability. However, the switching devices in a two-level SEPIC suffer from high voltage stresses and switching losses. To cope with this drawback, this study proposes a three-level SEPIC that uses a low voltage-rated switch and thus achieves better switching performance compared with the two-level SEPIC. The three-level SEPIC can reduce switch voltage stresses and switching losses. The converter operation and control method are described in this work. The experimental results for a 500 W prototype converter are also discussed. Experimental results show that unlike the two-level SEPIC, the three-level SEPIC achieves improved power efficiency with balanced capacitor voltages.

Study on the Level Limit Switch Using a Self Made 1-3 type Ceramic/Polymer Composite Ultrasonic Transducer (1-3형 복합압전체 초음파 트랜스듀서를 사용한 레벨Limit스위치에 관한 연구)

  • Park, K.I.;Kim, H.G.;Shin, K.H.;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.756-759
    • /
    • 2003
  • In this study, an ultrasonic transducer is fabricated with a 1-3 type composite resonator. Pulse-echo responses of an ultrasonic transducer are investigated in underwater with the designated water-levels. LED output signals of a level limit switch with changing a water level are obtained by using the currently developed self-made 1-3 type composite transducer and electric measuring unit. LED is turned on at above the up-limit level with increasing a water level, and LED is turned on at less than the down-limit level with decreasing a water level.

  • PDF

Optical Pattern Switching in Semiconductor Microresonators as All-Optical Switch

  • Kheradmand, Reza;Dastmalchi, Babak
    • ETRI Journal
    • /
    • 제31권5호
    • /
    • pp.593-597
    • /
    • 2009
  • In this paper, we present a spatial perturbation method to control the optical patterns in semiconductor microresonators in the far-field configuration. We propose a fast all-optical switch which operates at a low light level. The switching beam controls the behavior of output beams with strong intensities. The method has been applied successfully to different optical patterns such as rolls, squares, and hexagons.