DOI QR코드

DOI QR Code

Optical Pattern Switching in Semiconductor Microresonators as All-Optical Switch

  • Kheradmand, Reza (Research Institute for Applied Physics and Astronomy, University of Tabriz) ;
  • Dastmalchi, Babak (Christian Doppler Lab fur Oberflachenoptiche Methoden, Institute fur Halbleiter und Festkorperphysik, Johannes Kepler University)
  • Received : 2009.03.10
  • Accepted : 2009.06.04
  • Published : 2009.10.31

Abstract

In this paper, we present a spatial perturbation method to control the optical patterns in semiconductor microresonators in the far-field configuration. We propose a fast all-optical switch which operates at a low light level. The switching beam controls the behavior of output beams with strong intensities. The method has been applied successfully to different optical patterns such as rolls, squares, and hexagons.

Keywords

References

  1. M. Andrew et al., “All-Optical Switching in Rubidium Vapor,” Science, vol. 308, no. 5722, Apr. 2005, pp. 672-674. https://doi.org/10.1126/science.1110151
  2. R. Ramasswami and K.N. Sivarajan, Optical Networks: A Practical Perspective, San Francisco, CA: Morgan Aufman, 2002.
  3. H.M. Gibbs, Optical Bistability: Controlling Light with Light, Orlando, FL: Academic Press, 1985.
  4. M. Brambilla et al, “Spatial Soliton Pixels in Semiconductor Devices,” Phys. Rev. Lett., vol. 79, no. 11, Apr. 1997, pp. 2042-2045. https://doi.org/10.1103/PhysRevLett.79.2042
  5. D. Michaelis, U. Peschel, and F. Lederer, “Multistable Localized Structures and Superlattices in Semiconductor Optical Resonators,” Phys. Rev. A, vol. 56, no. 5, Feb. 1997, pp. R3366-R3369. https://doi.org/10.1103/PhysRevA.56.R3366
  6. L. Spinelli et al., “Spatial Solitons in Semiconductor Microcavities,” Phys. Rev. A, vol. 58, no. 3, Mar. 1998, pp. 2542-2559. https://doi.org/10.1103/PhysRevA.58.2542
  7. K.J. Resch, J.S. Lundeen, and A.M. Steinberg, “Conditional-Phase Switch at the Single-Photon Level,” Phys. Rev. Lett., vol. 89, no. 3, June 2002, pp. 037904-037907. https://doi.org/10.1103/PhysRevLett.89.037904
  8. S. Barland et al., “Cavity Solitons as Pixels in Semiconductor Microcavities,” Nature, vol. 419, Oct. 2002, pp. 699-702. https://doi.org/10.1038/nature01049
  9. I. Novikova, “Dynamic Optical Bistability in Resonately Enhanced Raman Generation,” Phys. Rev. A, vol. 69, no. 6, June 2004, pp. 061802-061805. https://doi.org/10.1103/PhysRevA.69.061802
  10. B.G. Sfez et al., “External-Beam Switching in Monolithic Bistable GaAs Quantum Well Etalons,” Appl. Phys. Lett., vol. 57, no. 18, Oct. 1990, p. 1849. https://doi.org/10.1063/1.104036
  11. X. Hachair et al., “Cavity-Soliton Switching in Semiconductor Microcavities,” Phys. Rev. A, vol. 72, no. 1, July 2005, pp. 013815-013818. https://doi.org/10.1103/PhysRevA.72.013815
  12. M. Brambilla et al, “Spatial Soliton Pixels in Semiconductor Devices,” Phys. Rev. Lett., vol. 79, no. 11, Apr. 1997, pp. 2042-2045. https://doi.org/10.1103/PhysRevLett.79.2042

Cited by

  1. Study of all optical switching behaviour in semiconductor microresonator with nano-active layer vol.248, pp.1, 2009, https://doi.org/10.1088/1742-6596/248/1/012054
  2. All-optical switches using solitons within nonlinear fibers vol.27, pp.18, 2009, https://doi.org/10.1080/09205071.2013.839961