DOI QR코드

DOI QR Code

A Subthreshold PMOS Analog Cortex Decoder for the (8, 4, 4) Hamming Code

  • Received : 2009.04.05
  • Accepted : 2009.06.21
  • Published : 2009.10.31

Abstract

This paper presents a method for decoding high minimal distance ($d_{min}$) short codes, termed Cortex codes. These codes are systematic block codes of rate 1/2 and can have higher$d_{min}$ than turbo codes. Despite this characteristic, these codes have been impossible to decode with good performance because, to reach high $d_{min}$, several encoding stages are connected through interleavers. This generates a large number of hidden variables and increases the complexity of the scheduling and initialization. However, the structure of the encoder is well suited for analog decoding. A proof-of-concept Cortex decoder for the (8, 4, 4) Hamming code is implemented in subthreshold 0.25-${\mu}m$ CMOS. It outperforms an equivalent LDPC-like decoder by 1 dB at BER=$10^{-5}$ and is 44 percent smaller and consumes 28 percent less energy per decoded bit.

Keywords

References

  1. J. Hagenauer and M. Winklhofer, “The Analog Decoder,” Proc. IEEE Int. Symp. Information Theory, Cambridge, USA, 16-21 Aug. 1998, p. 145.
  2. H.-A. Loeliger et al., “Probability Propagation and Decoding in Analog VLSI,” Proc. IEEE Int. Symp. Information Theory, Cambridge, USA, 16-21 Aug. 1998, p. 146.
  3. F. Lustenberger, “On the Design of Analog Iterative VLSI Decoders,” doctoral dissertation, ETH Zurich, No 13879, Hartung-Gorre, Konstanz, Series in Signal and Information Processing, vol. 2, ISBN 3-89649-622-0, ISSN 1616-671X, Nov. 2000.
  4. M. Arzel et al., “Semi-iterative Analog Turbo Decoding,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 54, no. 6, June 2007, pp. 1305-1316. https://doi.org/10.1109/TCSI.2007.897770
  5. C. Winstead et al., “A 0.8 V CMOS Analog Decoder for an (8, 4, 4) Extended Hamming Code.” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 53, no. 4, Apr. 2006, pp. 829-841. https://doi.org/10.1109/TCSI.2005.859773
  6. V. Gaudet and G. Gulak, “A 13.3 Mbps 0.35 $\mu$m CMOS Analog Turbo Decoder IC with a Configurable Interleaver,” IEEE J. Solid-State Circuits, vol. 38, no. 11, Nov. 2003, pp. 2010-2015. https://doi.org/10.1109/JSSC.2003.818134
  7. C. Winstead et al., “CMOS Analog MAP Decoder for (8, 4) Hamming Code,” IEEE J. Solid-State Circuits, vol. 39, no. 1, Jan. 2004, pp. 122-131. https://doi.org/10.1109/JSSC.2003.820845
  8. D. Vogrig et al., “A 0.35-$\mu$m CMOS Analog Turbo Decoder for the 40-Bit Rate 1/3 UMTS Channel Code,” IEEE J. Solid-State Circuits, vol. 40, no. 3, Mar. 2005, pp. 753-762. https://doi.org/10.1109/JSSC.2005.843628
  9. M. Moerz et al., “An Analog 0.25 $\mu$m BiCMOS Tailbiting MAP Decoder,” Proc. IEEE Int. Solid-State Circuits Conference, Feb. 2000, pp. 356-357.
  10. C. Lahuec et al., “Design and Test of a 0.25-$\mu$m BiCMOS Double-Binary Analogue APP Decoder,” Proc. 5th Analog Decoding Workshop, June 2006, pp. 35-38.
  11. A. Schaefer et al., “Analog Rotating Ring Decoder for an LDPC Convolutional Code,” Proc. IEEE Information Theory Workshop, Paris, France, 31 Mar.-4 Apr. 2003, pp. 226-229.
  12. D. MacKay, “Good Error-Correcting Codes Based on Very Sparse Matrices,” IEEE Trans. Information Theory, vol. 45, no. 2, Mar. 1999, pp. 399-431. https://doi.org/10.1109/18.748992
  13. J. Carlach, A. Otmani, and C. Vervoux, “A New Scheme for Building Good Self-Dual Block Codes,” Proc. IEEE Int. Symp. Information Theory, Sorrento, Italy, 25-30 June 2000, p. 476.
  14. A. Otmani, “Codes Cortex et construction de codes auto-duaux optimaux,” doctoral dissertation, Universite de Limoges, France, Oct. 2002.
  15. E. Cadic, “Construction de turbo codes cours possedant de bonnes proprietes de distances minimales,” doctoral dissertation, Universite de Limoges, France, Oct. 2003.
  16. G. Olocco and J. Tillich, “A Family of Self-Dual Codes which Behave in Many Respects Like Random Linear Codes of Rate 1/2,” Proc. IEEE Int. Symp. Information Theory, Washington DC, USA, 24-29, June 2001, p. 15.
  17. D.J.C. MacKay, “Good Error-Correcting Codes Based on Very Sparse Matrices,” IEEE Trans. Information Theory, vol. 45, no. 2, Mar. 1999, pp. 399-431. https://doi.org/10.1109/18.748992
  18. N. Duchaux et al., “Effect of BJT's Parasitics on Computing Cells for Analog Decoders,” Proc. Joint Int. IEEE Northeast Workshop on Circuits and Systems and TAISA Conference, Montreal, Canada, June 2008, pp. 301-304.
  19. J. Perez-Chamorro et al., “Design Rules for Subthreshold MOS Circuits,” Proc. 5th Analogue Decoding Workshop, Torino, Italy, June 2006, pp. 23-26.
  20. R. van Langevelde, A. Sholten, and D. Klaasen, “Physical Model of MOS Model 11,” Koninklijke Philips Electronics N.V., unclassified report 2003/00239, Tech. Rep., 2003.
  21. S. Hemati, A.H. Banihashemi, and C. Plett, “A 0.18 $\mu$m MOS Analog Min-Sum Iterative Decoder for a (32, 8) Low-Density Parity-Check (LDPC) Code,” IEEE J. Solid-State Circuits, vol. 41, no. 11, Nov. 2006, pp. 2531-2540. https://doi.org/10.1109/JSSC.2006.883329

Cited by

  1. Design of an Efficient Maximum Likelihood Soft Decoder for Systematic Short Block Codes vol.60, pp.7, 2012, https://doi.org/10.1109/tsp.2012.2193575