• Title/Summary/Keyword: Left h-ideal

Search Result 16, Processing Time 0.027 seconds

On the Definition of Intuitionistic Fuzzy h-ideals of Hemirings

  • Rahman, Saifur;Saikia, Helen Kumari
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.435-457
    • /
    • 2013
  • Using the Lukasiewicz 3-valued implication operator, the notion of an (${\alpha},{\beta}$)-intuitionistic fuzzy left (right) $h$-ideal of a hemiring is introduced, where ${\alpha},{\beta}{\in}\{{\in},q,{\in}{\wedge}q,{\in}{\vee}q\}$. We define intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) of a hemiring R and investigate their various properties. We characterize intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) and (${\alpha},{\beta}$)-intuitionistic fuzzy left (right) $h$-ideal of a hemiring R by its level sets. We establish that an intuitionistic fuzzy set A of a hemiring R is a (${\in},{\in}$) (or (${\in},{\in}{\vee}q$) or (${\in}{\wedge}q,{\in}$)-intuitionistic fuzzy left (right) $h$-ideal of R if and only if A is an intuitionistic fuzzy left (right) $h$-ideal with thresholds (0, 1) (or (0, 0.5) or (0.5, 1)) of R respectively. It is also shown that A is a (${\in},{\in}$) (or (${\in},{\in}{\vee}q$) or (${\in}{\wedge}q,{\in}$))-intuitionistic fuzzy left (right) $h$-ideal if and only if for any $p{\in}$ (0, 1] (or $p{\in}$ (0, 0.5] or $p{\in}$ (0.5, 1] ), $A_p$ is a fuzzy left (right) $h$-ideal. Finally, we prove that an intuitionistic fuzzy set A of a hemiring R is an intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) of R if and only if for any $p{\in}(s,t]$, the cut set $A_p$ is a fuzzy left (right) $h$-ideal of R.

GENERAL TYPES OF (α,β)-FUZZY IDEALS OF HEMIRINGS

  • Jun, Y.B.;Dudek, W.A.;Shabir, M.;Kang, Min-Su
    • Honam Mathematical Journal
    • /
    • v.32 no.3
    • /
    • pp.413-439
    • /
    • 2010
  • W. A. Dudek, M. Shabir and M. Irfan Ali discussed the properties of (${\alpha},{\beta}$)-fuzzy ideals of hemirings in [9]. In this paper, we discuss the generalization of their results on (${\alpha},{\beta}$)-fuzzy ideals of hemirings. As a generalization of the notions of $({\alpha},\;\in{\vee}q)$-fuzzy left (right) ideals, $({\alpha},\;\in{\vee}q)$-fuzzy h-ideals and $({\alpha},\;\in{\vee}q)$-fuzzy k-ideals, the concepts of $({\alpha},\;\in{\vee}q_m)$-fuzzy left (right) ideals, $({\alpha},\;\in{\vee}q_m)$-fuzzy h-ideals and $({\alpha},\;\in{\vee}q_m)$-fuzzy k-ideals are defined, and their characterizations are considered. Using a left (right) ideal (resp. h-ideal, k-ideal), we construct an $({\alpha},\;\in{\vee}q_m)$-fuzzy left (right) ideal (resp. $({\alpha},\;\in{\vee}q_m)$-fuzzy h-ideal, $({\alpha},\;\in{\vee}q_m)$-fuzzy k-ideal). The implication-based fuzzy h-ideals (k-ideals) of a hemiring are considered.

ON ENDOMORPHISM RING OF H-INVARIANT MODULES

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • v.6 no.2
    • /
    • pp.167-182
    • /
    • 1990
  • The relationships between submodules of a module and ideals of the endomorphism ring of a module had been studied in [1]. For a submodule L of a moudle M, the set $I^L$ of all endomorphisms whose images are contained in L is a left ideal of the endomorphism ring End (M) and for a submodule N of M, the set $I_N$ of all endomorphisms whose kernels contain N is a right ideal of End (M). In this paper, author defines an H-invariant module and proves that every submodule of an H-invariant module is the image and kernel of unique endomorphisms. Every ideal $I^L(I_N)$ of the endomorphism ring End(M) when M is H-invariant is a left (respectively, right) principal ideal of End(M). From the above results, if a module M is H-invariant then each left, right, or both sided ideal I of End(M) is an intersection of a left, right, or both sided principal ideal and I itself appropriately. If M is an H-invariant module then the ACC on the set of all left ideals of type $I^L$ implies the ACC on M. Also if the set of all right ideals of type $I^L$ has DCC, then H-invariant module M satisfies ACC. If the set of all left ideals of type $I^L$ satisfies DCC, then H-invariant module M satisfies DCC. If the set of all right ideals of type $I_N$ satisfies ACC then H-invariant module M satisfies DCC. Therefore for an H-invariant module M, if the endomorphism ring End(M) is left Noetherian, then M satisfies ACC. And if End(M) is right Noetherian then M satisfies DCC. For an H-invariant module M, if End(M) is left Artinian then M satisfies DCC. Also if End(M) is right Artinian then M satisfies ACC.

  • PDF

INTUITIONISTIC(S,T)-FUZZY h-IDEALS OF HEMIRINGS

  • Zhan, Jianming;Shum, K.P.
    • East Asian mathematical journal
    • /
    • v.22 no.1
    • /
    • pp.93-109
    • /
    • 2006
  • The concept of intuitionistic fuzzy set was first introduced by Atanassov in 1986. In this paper, we define the intuitionistic(S,T)-fuzzy left h-ideals of a hemiring by using an s-norm S and a t-norm T and study their properties. In particular, some results of fuzzy left h-ideals in hemirings recently obtained by Jun, $\"{O}zt\"{u}rk$, Song, and others are extended and generalized to intuitionistic (S,T)-fuzzy ideals over hemirings.

  • PDF

ON LEFT α-MULTIPLIERS AND COMMUTATIVITY OF SEMIPRIME RINGS

  • Ali, Shakir;Huang, Shuliang
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Let R be a ring, and ${\alpha}$ be an endomorphism of R. An additive mapping H : R ${\rightarrow}$ R is called a left ${\alpha}$-multiplier (centralizer) if H(xy) = H(x)${\alpha}$(y) holds for all x,y $\in$ R. In this paper, we shall investigate the commutativity of prime and semiprime rings admitting left ${\alpha}$-multiplier satisfying any one of the properties: (i) H([x,y])-[x,y] = 0, (ii) H([x,y])+[x,y] = 0, (iii) $H(x{\circ}y)-x{\circ}y=0$, (iv) $H(x{\circ}y)+x{\circ}y=0$, (v) H(xy) = xy, (vi) H(xy) = yx, (vii) $H(x^2)=x^2$, (viii) $H(x^2)=-x^2$ for all x, y in some appropriate subset of R.

HESITANT FUZZY BI-IDEALS IN SEMIGROUPS

  • JUN, YOUNG BAE;LEE, KYOUNG JA;SONG, SEOK-ZUN
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.143-154
    • /
    • 2015
  • Characterizations of hesitant fuzzy left (right) ideals are considered. The notion of hesitant fuzzy (generalized) bi-ideals is introduced, and related properties are investigated. Relations between hesitant fuzzy generalized bi-ideals and hesitant fuzzy semigroups are discussed, and characterizations of (hesitant fuzzy) generalized bi-ideals and hesitant fuzzy bi-ideals are considered. Given a hesitant fuzzy set $\mathcal{H}$ on a semigroup S, hesitant fuzzy (generalized) bi-ideals generated by $\mathcal{H}$ are established.

Purely Extending Modules and Their Generalizations

  • Shiv Kumar;Ashok Ji Gupta
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.15-27
    • /
    • 2023
  • A purely extending module is a generalization of an extending module. In this paper, we study several properties of purely extending modules and introduce the notion of purely essentially Baer modules. A module M is said to be a purely essentially Baer if the right annihilator in M of any left ideal of the endomorphism ring of M is essential in a pure submodule of M. We study some properties of purely essentially Baer modules and characterize von Neumann regular rings in terms of purely essentially Baer modules.

A NOTE ON MULTIPLICATIVE (GENERALIZED)-DERIVATION IN SEMIPRIME RINGS

  • REHMAN, NADEEM UR;HONGAN, MOTOSHI
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.81-92
    • /
    • 2018
  • In this article we study two Multiplicative (generalized)- derivations ${\mathcal{G}}$ and ${\mathcal{H}}$ that satisfying certain conditions in semiprime rings and tried to find out some information about the associated maps. Moreover, an example is given to demonstrate that the semiprimeness imposed on the hypothesis of the various results is essential.

A NOTE ON THE LOCAL HOMOLOGY

  • Rasoulyar, S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.387-391
    • /
    • 2004
  • Let A be Noetherian ring, a= (${\tau}_1..., \tau_n$ an ideal of A and $C_{A}$ be category of A-modules and A-homomorphisms. We show that the connected left sequences of covariant functors ${limH_i(K.(t^t,-))}_{i\geq0}$ and ${lim{{Tor^A}_i}(\frac{A}{a^f}-)}_{i\geq0}$ are isomorphic from $C_A$ to itself, where $\tau^t\;=\;{{\tau_^t}_1$, ㆍㆍㆍ${\tau^t}_n$.

PRIME M-IDEALS, M-PRIME SUBMODULES, M-PRIME RADICAL AND M-BAER'S LOWER NILRADICAL OF MODULES

  • Beachy, John A.;Behboodi, Mahmood;Yazdi, Faezeh
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1271-1290
    • /
    • 2013
  • Let M be a fixed left R-module. For a left R-module X, we introduce the notion of M-prime (resp. M-semiprime) submodule of X such that in the case M=R, it coincides with prime (resp. semiprime) submodule of X. Other concepts encountered in the general theory are M-$m$-system sets, M-$n$-system sets, M-prime radical and M-Baer's lower nilradical of modules. Relationships between these concepts and basic properties are established. In particular, we identify certain submodules of M, called "primeM-ideals", that play a role analogous to that of prime (two-sided) ideals in the ring R. Using this definition, we show that if M satisfies condition H (defined later) and $Hom_R(M,X){\neq}0$ for all modules X in the category ${\sigma}[M]$, then there is a one-to-one correspondence between isomorphism classes of indecomposable M-injective modules in ${\sigma}[M]$ and prime M-ideals of M. Also, we investigate the prime M-ideals, M-prime submodules and M-prime radical of Artinian modules.