DOI QR코드

DOI QR Code

PRIME M-IDEALS, M-PRIME SUBMODULES, M-PRIME RADICAL AND M-BAER'S LOWER NILRADICAL OF MODULES

  • Beachy, John A. (Department of Mathematical Sciences Northern Illinois University) ;
  • Behboodi, Mahmood (Department of Mathematical Sciences Isfahan University of Technology, School of Mathematics Institute for Research in Fundamental Sciences (IPM)) ;
  • Yazdi, Faezeh (Department of Mathematical Sciences Isfahan University of Technology)
  • Received : 2012.12.14
  • Published : 2013.11.01

Abstract

Let M be a fixed left R-module. For a left R-module X, we introduce the notion of M-prime (resp. M-semiprime) submodule of X such that in the case M=R, it coincides with prime (resp. semiprime) submodule of X. Other concepts encountered in the general theory are M-$m$-system sets, M-$n$-system sets, M-prime radical and M-Baer's lower nilradical of modules. Relationships between these concepts and basic properties are established. In particular, we identify certain submodules of M, called "primeM-ideals", that play a role analogous to that of prime (two-sided) ideals in the ring R. Using this definition, we show that if M satisfies condition H (defined later) and $Hom_R(M,X){\neq}0$ for all modules X in the category ${\sigma}[M]$, then there is a one-to-one correspondence between isomorphism classes of indecomposable M-injective modules in ${\sigma}[M]$ and prime M-ideals of M. Also, we investigate the prime M-ideals, M-prime submodules and M-prime radical of Artinian modules.

Keywords

References

  1. J. A. Beachy, M-injective modules and prime M-ideals, Comm. Algebra 30 (2002), no. 10, 4649-4676. https://doi.org/10.1081/AGB-120014660
  2. M. Behboodi, On the prime radical and Baer's lower nilradical of modules, Acta Math. Hungar. 122 (2009), no. 3, 293-306. https://doi.org/10.1007/s10474-008-8028-3
  3. M. Behboodi, A generalization of the classical krull dimension for modules, J. Algebra 305 (2006), no. 2, 1128-1148. https://doi.org/10.1016/j.jalgebra.2006.04.010
  4. M. Behboodi, A generalization of Baer's lower nilradical for modules, J. Algebra Appl. 6 (2007), no. 2, 337-353. https://doi.org/10.1142/S0219498807002284
  5. M. Behboodi and H. Koohy, Wealy prime modules, Vietnam J. Math. 32 (2004), no. 2, 185-195.
  6. J. C. Perez and J. R. Montes, Prime submodules and local Gabriel correspondence in ${\sigma}$[M], Comm. Algebra 40 (2012), no. 1, 213-232. https://doi.org/10.1080/00927872.2010.529095
  7. J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1978), 156-181.
  8. P. Gabriel, Des categories Abeliennes, Bull. Soc. Math. France 90 (1964), 323-448.
  9. K. R. Goodearl and R. B. Warfield, An Introduction to Non-Commutative Noetherian Rings, London Math. Soc. Student Texts 16, Camberidge University Press, Cambrige, 1989.
  10. J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra 20 (1992), no. 12, 3593-3602. https://doi.org/10.1080/00927879208824530
  11. H. I. Karakas, On Noetherian module, METU J. Pure Appl. Sci. 5 (1972), no. 2, 165-168.
  12. K. Koh, On prime one-sided ideals, Canad. Math. Bull. 14 (1971), 259-260. https://doi.org/10.4153/CMB-1971-047-3
  13. G. Krause, On fully left bounded left Noetherian ring, J. Algebra 23 (1972), 88-99. https://doi.org/10.1016/0021-8693(72)90047-6
  14. T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag New York, Inc 1991.
  15. C. P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul. 33 (1984), no. 1, 61-69.
  16. S. H. Man, On commutative Noetherian rings which have the s.p.a.r. property, Arch. Math. (Basel) 70 (1998), no. 1, 31-40. https://doi.org/10.1007/s000130050162
  17. R. L. McCasland, M. E. Moore, On radicals of submodules, Comm. Algebra 19 (1991), 1327-1341. https://doi.org/10.1080/00927879108824205
  18. R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math. 23 (1993), no. 3, 1041-1062. https://doi.org/10.1216/rmjm/1181072540
  19. G. Michler, Prime right ideals and right Noetherian rings, Proc. Symposium on Theory of Rings, 1971, in Ring theory (R. Gordon, ed.), 251-255, Academic Press, New York, 1972.
  20. P. F. Smith, The injective test lemma in fully bounded rings, Comm. Algebra 9 (1981), no. 17, 1701-1708. https://doi.org/10.1080/00927878108822677
  21. R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Reading 1991.