• Title/Summary/Keyword: M-injective module

Search Result 49, Processing Time 0.025 seconds

DING INJECTIVE MODULES OVER FROBENIUS EXTENSIONS

  • Wang, Zhanping;Yang, Pengfei;Zhang, Ruijie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.217-224
    • /
    • 2021
  • In this paper, we study Ding injective modules over Frobenius extensions. Let R ⊂ A be a separable Frobenius extension of rings and M any left A-module, it is proved that M is a Ding injective left A-module if and only if M is a Ding injective left R-module if and only if A ⊗R M (HomR(A, M)) is a Ding injective left A-module.

GENERALIZATIONS OF THE QUASI-INJECTIVE MODULE

  • Han, Chang-Woo;Choi, Su-Jeong
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.4
    • /
    • pp.811-813
    • /
    • 1995
  • The purpose of this paper is to prove the divisibility of a direct injective module and every closed submodule of a $\pi$-injective module M is a direct summand of M.

  • PDF

Some Results on Simple-Direct-Injective Modules

  • Derya Keskin Tutuncu;Rachid Tribak
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.521-537
    • /
    • 2023
  • A module M is called a simple-direct-injective module if, whenever A and B are simple submodules of M with A ≅ B and B is a direct summand of M, then A is a direct summand of M. Some new characterizations of these modules are proved. The structure of simple-direct-injective modules over a commutative Dedekind domain is fully determined. Also, some relevant counterexamples are indicated to show that a left simple-direct-injective ring need not be right simple-direct-injective.

ALMOST PRINCIPALLY SMALL INJECTIVE RINGS

  • Xiang, Yueming
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1189-1201
    • /
    • 2011
  • Let R be a ring and M a right R-module, S = $End_R$(M). The module M is called almost principally small injective (or APS-injective for short) if, for any a ${\in}$ J(R), there exists an S-submodule $X_a$ of M such that $l_Mr_R$(a) = Ma $Ma{\bigoplus}X_a$ as left S-modules. If $R_R$ is a APS-injective module, then we call R a right APS-injective ring. We develop, in this paper, APS-injective rings as a generalization of PS-injective rings and AP-injective rings. Many examples of APS-injective rings are listed. We also extend some results on PS-injective rings and AP-injective rings to APS-injective rings.

PROJECTIVE AND INJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER Q = • → • → •

  • Park, Sangwon;Han, Juncheol
    • Korean Journal of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.271-281
    • /
    • 2009
  • We define injective and projective representations of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$. Then we show that a representation $M_1\longrightarrow[50]^{f1}M_2\longrightarrow[50]^{f2}M_3$ of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$ is projective if and only if each $M_1,\;M_2,\;M_3$ is projective left R-module and $f_1(M_1)$ is a summand of $M_2$ and $f_2(M_2)$ is a summand of $M_3$. And we show that a representation $M_1\longrightarrow[50]^{f1}M_2\longrightarrow[50]^{f2}M_3$ of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$ is injective if and only if each $M_1,\;M_2,\;M_3$ is injective left R-module and $ker(f_1)$ is a summand of $M_1$ and $ker(f_2)$ is a summand of $M_2$.

  • PDF

INJECTIVE PROPERTY RELATIVE TO NONSINGULAR EXACT SEQUENCES

  • Arabi-Kakavand, Marzieh;Asgari, Shadi;Tolooei, Yaser
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.559-571
    • /
    • 2017
  • We investigate modules M having the injective property relative to nonsingular modules. Such modules are called "$\mathcal{N}$-injective modules". It is shown that M is an $\mathcal{N}$-injective R-module if and only if the annihilator of $Z_2(R_R)$ in M is equal to the annihilator of $Z_2(R_R)$ in E(M). Every $\mathcal{N}$-injective R-module is injective precisely when R is a right nonsingular ring. We prove that the endomorphism ring of an $\mathcal{N}$-injective module has a von Neumann regular factor ring. Every (finitely generated, cyclic, free) R-module is $\mathcal{N}$-injective, if and only if $R^{(\mathbb{N})}$ is $\mathcal{N}$-injective, if and only if R is right t-semisimple. The $\mathcal{N}$-injective property is characterized for right extending rings, semilocal rings and rings of finite reduced rank. Using the $\mathcal{N}$-injective property, we determine the rings whose all nonsingular cyclic modules are injective.

Semi M-Projective and Semi N-Injective Modules

  • Hakmi, Hamza
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.83-94
    • /
    • 2016
  • Let M and N be modules over a ring R. The purpose of this paper is to study modules M, N for which the bi-module [M, N] is regular or pi. It is proved that the bi-module [M, N] is regular if and only if a module N is semi M-projective and $Im({\alpha}){\subseteq}^{\oplus}N$ for all ${\alpha}{\in}[M,N]$, if and only if a module M is semi N-injective and $Ker({\alpha}){\subseteq}^{\oplus}N$ for all ${\alpha}{\in}[M,N]$. Also, it is proved that the bi-module [M, N] is pi if and only if a module N is direct M-projective and for any ${\alpha}{\in}[M,N]$ there exists ${\beta}{\in}[M,N]$ such that $Im({\alpha}{\beta}){\subseteq}^{\oplus}N$, if and only if a module M is direct N-injective and for any ${\alpha}{\in}[M,N]$ there exists ${\beta}{\in}[M,N]$ such that $Ker({\beta}{\alpha}){\subseteq}^{\oplus}M$. The relationship between the Jacobson radical and the (co)singular ideal of [M, N] is described.

MAX-INJECTIVE, MAX-FLAT MODULES AND MAX-COHERENT RINGS

  • Xiang, Yueming
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.611-622
    • /
    • 2010
  • A ring R is called left max-coherent provided that every maximal left ideal is finitely presented. $\mathfrak{M}\mathfrak{I}$ (resp. $\mathfrak{M}\mathfrak{F}$) denotes the class of all max-injective left R-modules (resp. all max-flat right R-modules). We prove, in this article, that over a left max-coherent ring every right R-module has an $\mathfrak{M}\mathfrak{F}$-preenvelope, and every left R-module has an $\mathfrak{M}\mathfrak{I}$-cover. Furthermore, it is shown that a ring R is left max-injective if and only if any left R-module has an epic $\mathfrak{M}\mathfrak{I}$-cover if and only if any right R-module has a monic $\mathfrak{M}\mathfrak{F}$-preenvelope. We also give several equivalent characterizations of MI-injectivity and MI-flatness. Finally, $\mathfrak{M}\mathfrak{I}$-dimensions of modules and rings are studied in terms of max-injective modules with the left derived functors of Hom.

HOM AND EXT FUNCTORS OF GENERALIZED INVERSE POLYNOMIAL MODULES

  • Han, Chang-Woo;Park, Sang-Won;Cho, Eun-Ha
    • East Asian mathematical journal
    • /
    • v.16 no.1
    • /
    • pp.111-123
    • /
    • 2000
  • Northcott and McKerrow proved that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-1}]$ is an injective left R[xl-module. Park generalize Northcott and McKerrow's result so that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-S}]$ is an injective left $R[x^s]$-module, where S is a submonoid of N(N is the set of all natural numbers). In this paper we show $$Hom_{R[x^S]}(M[x^{-S}],\;N[x^{-S}]){\cong}Hom_R(M,\;N)[[x^S]]$$ and using the above result and this isomorphism, finally we show that $$Ext^i_{R[x^S]}(M[x^{-S}],\;N[x^{-S}]){\cong}Ext^i_R(M,\;N)[[x^S]]$$.

  • PDF

ON INJECTIVITY AND P-INJECTIVITY

  • Xiao Guangshi;Tong Wenting
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.299-307
    • /
    • 2006
  • The following results ale extended from P-injective rings to AP-injective rings: (1) R is left self-injective regular if and only if R is a right (resp. left) AP-injective ring such that for every finitely generated left R-module M, $_R(M/Z(M))$ is projective, where Z(M) is the left singular submodule of $_{R}M$; (2) if R is a left nonsingular left AP-injective ring such that every maximal left ideal of R is either injective or a two-sided ideal of R, then R is either left self-injective regular or strongly regular. In addition, we answer a question of Roger Yue Chi Ming [13] in the positive. Let R be a ring whose every simple singular left R-module is Y J-injective. If R is a right MI-ring whose every essential right ideal is an essential left ideal, then R is a left and right self-injective regular, left and right V-ring of bounded index.