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Abstract. A module M is called a simple-direct-injective module if, whenever A and B

are simple submodules of M with A ∼= B and B is a direct summand of M , then A is

a direct summand of M . Some new characterizations of these modules are proved. The

structure of simple-direct-injective modules over a commutative Dedekind domain is fully

determined. Also, some relevant counterexamples are indicated to show that a left simple-

direct-injective ring need not be right simple-direct-injective.

1. Preliminaries and Introduction

Throughout, all rings R are associative with identity and all modules are unitary
right R-modules. For a module M , we denote by Rad(M), Soc(M) and E(M) the
Jacobson radical, the socle and the injective hull of M , respectively. We write
N ⊆M if N is a subset of M , and N ≤M if N is a submodule of M . The notation
N ≤d M means that N is a direct summand of M . For two modules X, Y over a ring
R, the set of R-homomorphisms from X to Y is denoted by HomR(X,Y ). For a ring
R, we denote by J(R) the Jacobson radical of R. Let M be a module over a ring R.
Recall that M is called a C2-module if every submodule of M which is isomorphic
to a direct summand is itself a direct summand of M . In addition, the module M
is said to be a C3-module if the sum of any two direct summands of M with zero
intersection is again a direct summand of M . It was shown in [4, Proposition 2.1]
that the “simple” versions of C2 and C3-modules coincide. Camillo et al. [4] called
these modules simple-direct-injective modules. Then M is a simple-direct-injective
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module if, whenever A and B are simple submodules of M with A ∼= B and B a
direct summand of M , then A is a direct summand of M . Equivalently, for any
simple direct summands A and B of M with A∩B = 0, A⊕B is a direct summand
of M . A number of examples of simple-direct-injective modules appeared in some
research papers. Among others, note that every indecomposable right R-module is
simple-direct-injective by [4, Example 2.3(1)]. Moreover, according to [4, Example
2.3(2)], every cyclic R-module is simple-direct-injective if R is a commutative ring.
It is clear that every R-module M which has no simple direct summands is simple-
direct-injective. For example, we can take a module M with M = Rad(M). Also,
if a module M = M1 ⊕M2 is a direct sum of two nonsimple indecomposable R-
modules M1 and M2, then M has no simple direct summands (see [8, Example
2.6(1)]). Next, we present some known characterizations of various rings in terms
of simple-direct-injective modules.

1. Given a ring R, the right R-module RR is simple-direct-injective if and only if
every projective right R-module is simple-direct-injective ([4, Corollary 2.15]).

2. A ring R is an artinian serial ring with J(R)2 = 0 if and only if every simple-
direct-injective right R-module is a C3-module (a quasi-injective module) ([4,
Theorem 3.4]).

3. A ring R is semisimple if and only if every simple-direct-injective right R-
module is injective ([4, Corollary 3.5]).

4. A ring R is a right V -ring if and only if every 2-generated (finitely cogener-
ated) right R-module is simple-direct-injective ([4, Proposition 4.1]).

5. A von Neumann regular ring R is a right V -ring if and only if every cyclic
right R-module is simple-direct-injective ([4, Theorem 4.4]).

Recently, Büyükas.ık et al. [3] gave a complete characterization of simple-direct-
injective abelian groups. They proved in [3, Theorem 2] that an abelian group
M is simple-direct-injective if and only if for each prime number p, the p-primary
component Tp(M) is semisimple or Soc(Tp(M)) ⊆ Rad(Tp(M)).

The motivation of this paper comes from these three works: [3], [4] and [8].
Our goals are to extend the preceding characterization of simple-direct-injective
abelian groups to modules over commutative Dedekind domains, investigate some
properties of simple-direct-injective modules and rings and construct some useful
examples.

In Section 2, we present some easy examples. In Section 3, we obtain several
equivalent conditions for modules to being simple-direct-injective and give some
properties of this type of modules. Among others, we prove that a module M
is simple-direct-injective if and only if for every pair of idempotents e, f ∈ S =
EndR(M) such that e(M) and f(M) are simple and e(M) ∩ f(M) = 0, there exist
orthogonal idempotents g, h ∈ S such that eS = gS and fS = hS. It is also shown
that a module M is simple-direct-injective if and only if for every submodule K of
M such that K = K1 ⊕K2, K1 and K2 are simple (perspective) direct summands
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of M , every homomorphism ϕ : K → M can be extended to an endomorphism
θ : M → M . In addition, we prove that for an R-module M = ⊕i∈IMi which is a
direct sum of submodules Mi (i ∈ I) such that for every direct summand X of M ,
X = ⊕i∈I(X∩Mi) (for example, if HomR(Mi,Mj) = 0, for all distinct i, j ∈ I), then
M is simple-direct-injective if and only if Mi is simple-direct-injective for all i ∈ I.
This result is useful to investigate simple-direct-injective modules over commuta-
tive Dedekind domains. In Section 4, we fully characterize simple-direct-injective
modules over commutative Dedekind domains. In particular, we prove an extension
of [3, Theorem 2] to modules over commutative Dedekind domains. In Section 5,
we investigate simple-direct-injective rings. A ring R is called left (right) simple-
direct-injective if the left (right) R-module RR (RR) is simple-direct-injective. We
show that being a simple-direct-injective ring is not left-right symmetric. Moreover,
we prove that the class of left (right) simple-direct-injective rings is closed under
direct products. Some necessary conditions for the endomorphism ring of a module
to be right simple-direct-injective are investigated.

2. Some Examples

In this section, we provide some other examples of simple-direct-injective mod-
ules. It is well known that a simple submodule of a module M is either small
in M or a direct summand of M . This clearly implies that any module M with
Soc(M) ∩ Rad(M) = 0 is simple-direct-injective since all simple submodules of M
are direct summand. Next, we present an important class of modules satisfying this
condition.

Example 2.1. Let R be any ring and let M be a regular right R-module (i.e. ev-
ery cyclic (finitely generated) submodule of M is a direct summand of M (see [15,
Remark 6.1])). Therefore M is a simple-direct-injective module since every simple
submodule of M is a direct summand of M . In particular, any projective mod-
ule over a von Neumann regular ring is simple-direct-injective by [15, Proposition
6.7(4)].

A module M is called dual Rickart if for every endomorphism f of M , f(M)
is a direct summand of M (see [9] and [11]). It is easily seen that every dual
Rickart module is simple-direct-injective, but the converse is not true, in general.
For example, the Z-module Z is simple-direct-injective but it is not dual Rickart.
Now using [9, Theorem 3.2 and Corollary 3.3], we obtain the following two examples
of simple-direct-injective modules. For the undefined notions here we refer to [7].

Example 2.2. Let R be a prime right Goldie ring such that R is not right primitive
and let an R-module M be a direct sum of a torsion-free divisible submodule X
and a torsion semisimple submodule Y . Then M is simple-direct-injective.

Example 2.3. Let R be a prime PI-ring which is not artinian and let an R-module
M be a direct sum of a torsion-free divisible submodule X and a torsion semisimple
submodule Y . Then M is simple-direct-injective.
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It is clear that any module M with Soc(M) ⊆ Rad(M) (for example, Soc(M) =
0 or Rad(M) = M) is simple-direct-injective since every simple submodule of M is
small in M .

Example 2.4. Let R be a local right artinian ring which is not semisimple (for
example, we can take R = Z/pnZ for some prime number p and some integer n ≥ 2).
Clearly the right R-module RR has no simple direct summands. Therefore RR is
a simple-direct-injective R-module. Note that Soc(RR) ⊆ Rad(RR), Soc(RR) 6= 0
and Rad(RR) 6= RR.

It is well known that the notion of simple-direct-injective modules is closed
under direct summands. To construct counterexamples showing that the simple-
direct-injective property is not inherited by submodules and direct sums, we need
the following lemma.

Lemma 2.5. Let M be a module having a simple submodule S such that S is
not a direct summand of M (e.g., M is indecomposable with Soc(M) 6= 0 and
Soc(M) 6= M). Then M ⊕ Soc(M) is not simple-direct-injective.

Proof. Assume that M ⊕ Soc(M) is simple-direct-injective. Then M ⊕S is simple-
direct-injective by [3, Lemma 6]. Now consider the inclusion map i : S → M . By
[4, Proposition 2.1], Im(i) = S is a direct summand of M . This contradicts our
assumption. Therefore M ⊕ Soc(M) can not be simple-direct-injective.

Example 2.6. Let a module M = ⊕i∈IMi be a direct sum of indecomposable
nonsimple submodules Mi (i ∈ I) such that Soc(Mi0) 6= 0 for some i0 ∈ I. Then
the module N = M ⊕M is simple-direct-injective since N has no simple direct
summands. However, its submodule M ⊕ Soc(M) is not simple-direct-injective by
Lemma 2.5. Moreover, note that both M and Soc(M) are simple-direct-injective.
As an explicit example, we can take for M any direct sum of indecomposable
nonsimple Z-modules (e.g., Z, Q) such that at least one of them must be isomorphic
to Z/pnZ or to Z(p∞) for some prime number p and some integer n ≥ 2.

3. Some Properties of Simple-Direct-Injective Modules

In this section we provide some new equivalent formulations of being a simple-
direct-injective module and establish some properties of this type of modules. In
the proof of [4, Proposition 2.1], one can easily see that the implication (1) ⇒ (2)
is true even if the condition “B is simple” is deleted from the statement (2). We
thus get the following proposition. Its proof is given for completeness.

Proposition 3.1. The following conditions are equivalent for a module M :

(i) M is simple-direct-injective;

(ii) For any direct summands A and B of M such that A is simple and A∩B = 0,
A⊕B ≤d M .
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Proof. (i) ⇒ (ii) Let A and B be direct summands of M such that A is simple and
A ∩B = 0. Then M = B ⊕B′ for some submodule B′ of M . Let π : B ⊕B′ → B′

be the projection map with Kerπ = B. Since A ∩ B = 0, π(A) ∼= A. Since M
is simple-direct-injective, π(A) ≤d M . Hence π(A) ≤d B

′. Therefore there exists
a submodule X of B′ such that B′ = X ⊕ π(A). It follows that M = B ⊕ B′ =
π(A) ⊕ B ⊕X. Note that π(A) ⊕ B = A ⊕ B. Thus M = A ⊕ B ⊕X and hence
A⊕B ≤d M .

(ii) ⇒ (i) This follows from [4, Proposition 2.1].

Recall that two direct summands A and B of a module M are called perspective
(see [5]) if M = A ⊕X = B ⊕X for some submodule X of M . Following [1], two
idempotents e and f of a ring R are called perspective if eR and fR are perspective
direct summands of the right R-module RR (i.e. there exists a right ideal C of R
such that R = eR ⊕ C = fR ⊕ C). It was shown in [1, Proposition 2.13] that a
module M is simple-direct-injective if and only if for any simple perspective direct
summands A, B of M with A ∩ B = 0, A ⊕ B is a direct summand of M . Using
the notion of perspectivity of idempotents, we obtain the following characterization
of simple-direct-injective modules. The proof of this result is similar to that of [12,
Lemma 4.5] (see also [1, Lemma 3.1]).

Theorem 3.2. The following are equivalent for a module M and S = EndR(M):

(i) M is simple-direct-injective;

(ii) For every pair of idempotents e, f ∈ S such that e(M) and f(M) are simple
and e(M) ∩ f(M) = 0, there exist orthogonal idempotents g, h ∈ S such that
eS = gS and fS = hS;

(iii) For every pair of perspective idempotents e, f ∈ S such that e(M) and f(M)
are simple and e(M)∩ f(M) = 0, there exist orthogonal idempotents g, h ∈ S
such that e(M) = g(M) and f(M) = h(M);

(iv) For every pair of perspective idempotents e, f ∈ S such that e(M) and f(M)
are simple and e(M)∩ f(M) = 0, there exists an idempotent g of S such that
e(M) = g(M) and f(M) ⊆ (1− g)(M).

Proof. (i) ⇒ (ii) Suppose that M is simple-direct-injective. Let e2 = e, f2 = f ∈ S
with e(M) ∩ f(M) = 0 such that e(M) and f(M) are simple modules. Then
M = e(M) ⊕ f(M) ⊕ N for some submodule N of M (see Proposition 3.1). Let
g : M → e(M) be the projection map with Kerg = f(M)⊕N and h : M → f(M)
be the projection map with Kerh = e(M)⊕N . Clearly, g(M) = e(M) and h(M) =
f(M). Then by [12, Lemma 1.1], gS = eS and hS = fS. It is not hard to see that
h and g are orthogonal.

(ii) ⇒ (iii) Clear by [12, Lemma 1.1].
(iii) ⇒ (iv) Let e, f ∈ S be perspective idempotents such that e(M) and f(M)

are simple and e(M)∩f(M) = 0. By hypothesis, there exist orthogonal idempotents
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g, h ∈ S such that e(M) = g(M) and f(M) = h(M). Note that f(M) = h(M) ⊆
Kerg = (1− g)(M), as desired.

(iv) ⇒ (i) Let A and B be simple perspective direct summands of M with
A ∩ B = 0. Then A = e(M) and B = f(M) for some idempotents e and f of the
ring S. By (iv), there exists an idempotent g of S such that A = g(M) and B ⊆
(1−g)(M). Hence B is a direct summand of (1−g)(M). SinceM = g(M)⊕(1−g)M ,
it follows that A⊕B is a direct summand of M . Now using [1, Proposition 2.13], we
conclude that M is a simple-direct-injective module. This completes the proof.

The following lemma is needed to prove another characterization of simple-
direct-injective modules.

Lemma 3.3. Let A and B be direct summands of a module M such that A∩B = 0.
Then the following are equivalent:

(i) C = A⊕B is a direct summand of M ;

(ii) Every homomorphism ϕ : C → M can be extended to an endomorphism
θ : M →M .

Proof. (i) ⇒ (ii) This is clear.
(ii) ⇒ (i) Note that M = B ⊕ U for some submodule U of M . Let π : C → B

be the projection of C on B along A and let µ : B →M denote the inclusion map.
By (ii), the homomorphism µπ : C → M can be extended to an endomorphism
θ : M → M . Since θ(A) = µπ(A) = 0, we have A ⊆ Kerθ. Moreover, it is
clear that θ(y) = y for all y ∈ B and hence Kerθ ∩ B = 0. Now take an element
m ∈ M . As M = B ⊕ U , θ(m) = b + u for some elements b ∈ B and u ∈ U .
Therefore θ(m) = θ(b) + u. Thus u = θ(m− b) and so m− b ∈ θ−1(U). This yields
m = (m− b) + b ∈ θ−1(U) +B. It follows that M = θ−1(U) +B.

Now to show that B ∩ θ−1(U) = 0, take a ∈ B ∩ θ−1(U). Then θ(a) = a ∈
U ∩B = 0. Therefore M = θ−1(U)⊕B.

Let V be a submodule of M such that M = A⊕ V . Then θ−1(U) = θ−1(U) ∩
(A⊕V ) = A⊕(θ−1(U)∩V ) because A ⊆ Kerθ ⊆ θ−1(U). Hence M = θ−1(U)⊕B =
A⊕ (θ−1(U) ∩ V )⊕B = C ⊕ (θ−1(U) ∩ V ). This completes the proof.

Proposition 3.4. The following are equivalent for a module M :

(i) M is simple-direct-injective;

(ii) For every submodule K of M such that K = K1 ⊕ K2 and K1 and K2 are
simple perspective direct summands of M , every homomorphism ϕ : K →M
can be extended to an endomorphism θ : M →M .

Proof. This follows by combining the preceding lemma with [1, Proposition 2.13].

Proposition 3.5. The following are equivalent for a module M :
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(i) M is simple-direct-injective;

(ii) For every endomorphisms α, β of M such that Kerβ = Kerα and Kerα is a
direct summand of M which is a maximal submodule of M , there exists an
endomorphism γ of M such that γα = β.

Proof. (i) ⇒ (ii) Let α and β be endomorphisms of M such that Kerβ = Kerα
and Kerα is a direct summand of M which is a maximal submodule of M . Then
M = Kerα ⊕ L for some simple submodule L of M . Clearly α|L : L → M is a
monomorphism. Since M is simple-direct-injective, it follows that α(L) is a direct
summand of M . So there exists a homomorphism η : M → L such that ηα|L =

1L. Now since Kerα = Kerβ, the homomorphism β : M/Kerα → M given by
m + Kerα 7→ β(m) is well defined. In addition, consider the isomorphism α : L →
M/Kerα defined by l 7→ l + Kerα for all l ∈ L. Set γ = βαη. Note that γ is an
endomorphism of M . To show that γα = β, take m ∈M . Then m = x+ l for some
x ∈ Kerα and l ∈ L. Therefore,

γα(m) = βαηα(m) = βαηα(x+ l) = βαηα(l) = βα(l) = β(l + Kerα)
= β(x+ l + Kerα) = β(m+ Kerα) = β(m).

This implies that γ is the desired endomorphism of M .
(ii)⇒ (i) Let K be a simple direct summand of M . Hence M = K⊕K ′ for some

submodule K ′ of M . Assume that K is isomorphic to a simple submodule S of M .
So there exists an isomorphism µ : K → S. Consider the endomorphisms ϕ and θ of
M defined respectively by k+k′ 7→ µ(k) and k+k′ 7→ k for any k ∈ K and k′ ∈ K ′.
Then ϕθ is an endomorphism of M such that Kerϕθ = Kerθ = K ′ is a maximal
submodule of M . By hypothesis, there exists an endomorphism γ : M → M such
that γϕθ = θ. Hence (γϕ−1M )θ = 0. Since θ is an epimorphism, we have γϕ = 1M .
Thus Imϕ = S is a direct summand of M (see [2, Lemma 5.1]). Therefore M is a
simple-direct-injective module.

Recall that any module M is called pseudo-N -injective, if every monomorphism
f : K → M , where K ≤ N , can be extended to a homomorphism from N to M .
The next proposition characterizes modules whose submodules are simple-direct-
injective in terms of the pseudo-injectivity.

Proposition 3.6. The following conditions are equivalent for a module M :

(i) Every submodule of M is simple-direct-injective;

(ii) For any submodules A and B of M with B simple and A ∩ B = 0, B is
pseudo-A-injective.

Proof. (i) ⇒ (ii) Let A and B be submodules of M such that B is simple and
A ∩ B = 0. Let us show that B is pseudo-A-injective. Let 0 6= f : X → B be
a monomorphism with X ≤ A. Since B is simple, f is an isomorphism. Now
X ∼= B ≤d A⊕B and B and X are submodules of A⊕B. By hypothesis, A⊕B is
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simple-direct-injective and B is simple. Therefore X ≤d A⊕B, and hence X ≤d A.
Thus f can be extended to A.

(ii) ⇒ (i) Let L be a submodule of M . We will show that L is simple-direct-
injective. For, let L = A ⊕ B with B simple and let f : B → A be a nonzero
homomorphism. By hypothesis, B is pseudo-A-injective. Since B ∼= f(B), f(B) is
pseudo-A-injective. This implies that the identity homomorphism 1f(B) : f(B) →
f(B) can be extended to a homomorphism g : A→ f(B). Now g ◦ i = 1f(B), where
i : f(B) → A is the inclusion map. Therefore i(f(B)) = f(B) ≤d A. From [4,
Proposition 2.1 (1) ⇔ (3)], it follows that L is simple-direct-injective.

Next, we present some examples of modules satisfying the conditions in the
hypothesis of Proposition 3.6.

Example 3.7. (i) Let M be a module such that Soc(M) = 0. Then every submod-
ule of M is simple-direct-injective.

(ii) Consider the Z-module M = Z(p∞), where p is a prime number. It is well
known that any nonzero proper submodule of M is isomorphic to Z/pkZ for some
integer k ≥ 1. It follows that every submodule of M is simple-direct-injective.

(iii) Let R be a commutative principal ideal ring. By [4, Example 2.3(2)],
every cyclic R-module is simple-direct-injective. Thus, every submodule of a cyclic
R-module is simple-direct-injective.

In the following proposition, we provide sufficient conditions under which a
direct sum of simple-direct-injective modules is simple-direct-injective. This result
should be contrasted with Lemma 2.5 and Example 2.6.

Proposition 3.8. Let R be any ring and let an R-module M = ⊕i∈IMi be a direct
sum of submodules Mi (i ∈ I). Suppose that one of the following conditions is
fulfilled:

(i) For every simple direct summand X of M , X ⊆Mi for some i ∈ I; or

(ii) HomR(Mi,Mj) = 0 for all distinct i, j ∈ I; or

(iii) For every direct summand X of M , X = ⊕i∈I(X ∩Mi).

Then M is simple-direct-injective if and only if Mi is simple-direct-injective for all
i ∈ I.

Proof. If M is simple-direct-injective, then Mi is simple-direct-injective for all i ∈ I
by [3, Lemma 6]. Conversely, assume that each Mi (i ∈ I) is simple-direct-injective.

(i) Let A and B be simple direct summands of M with A∩B = 0. By hypothesis,
there exist j and k in I such that A ⊆Mj and B ⊆Mk. Since A and B are direct
summands of M , A ≤d Mj and B ≤d Mk. Assume that j 6= k. Then clearly
A ⊕ B ≤d Mj ⊕Mk, and hence A ⊕ B ≤d M . Now assume that j = k. Since
Mj is simple-direct-injective, it follows that A⊕B is a direct summand of Mj and
hence it is a direct summand of M . Therefore M is simple-direct-injective by [4,
Proposition 2.1].
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(ii) Let S be a simple direct summand of M . It is well known that S has the
exchange property (see [16, Proposition 1]). Then M = S ⊕ (⊕i∈IM

′
i) for some

submodules M ′i ≤Mi (i ∈ I). It follows that M ′i0 6= Mi0 for some i0 ∈ I. Moreover,
since ⊕i∈IM

′
i is a maximal submodule of M , we have M ′i = Mi for every i 6= i0.

This implies that M = (S ⊕M ′i0) ⊕ (⊕i 6=i0Mi). Thus S ⊕M ′i0 ∼= Mi0 . But Mi0 is
fully invariant in M as HomR(Mi0 ,Mj) = 0 for every j 6= i0. Then S ⊕M ′i0 ⊆Mi0

and hence S ⊆Mi0 . The result now follows from (i).
(iii) This follows from the fact that the condition (iii) implies (i).

The following example shows that the conditions (i), (ii) and (iii) in the hy-
pothesis of Proposition 3.8 are not superfluous.

Example 3.9. Consider the Z-module M = Z/pZ ⊕ Z(p∞), where p is a prime
number. By Lemma 2.5, M is not a simple-direct-injective module. Let 0 6= a ∈
Z(p∞) with pa = 0 and set S = (1, a)Z. It is clear that S ⊕ Z(p∞) = M . On the
other hand, S * Z/pZ⊕ 0 and S * 0⊕ Z(p∞).

In the next example, we present another simple-direct-injective module.

Example 3.10. Let M = M1⊕M2 be an R-module such that Rad(M1) = M1 and
Rad(M2) = 0. It is clear that M1 has no simple direct summands. In addition, all
simple submodules of M2 are direct summand. Therefore M1 and M2 are simple-
direct-injective. Assume that either Soc(M1) = 0 or Soc(M2) = 0. Then for any
simple submodule S of M , we have either S ⊆ M1 or S ⊆ M2. Using Proposition
3.8, we conclude that M is simple-direct-injective.

Next, we will be concerned with factor modules of simple-direct-injective mod-
ules. We begin with a result which characterizes the class of commutative rings over
which the class of simple-direct-injective modules is closed under factor modules.

Proposition 3.11. Let R be a right simple-direct-injective ring (for instance, R is
commutative). Then the following conditions are equivalent:

(i) All factor modules of simple-direct-injective R-modules are simple-direct-
injective;

(ii) R is a right V-ring.

Proof. (i) ⇒ (ii) By [4, Theorem 2.14], every free right R-module is simple-direct-
injective. Now the condition (i) implies that every right R-module is simple-direct-
injective. Thus R is a right V-ring by [4, Proposition 4.1].

(ii) ⇒ (i) This follows from [4, Proposition 4.1].

From the preceding proposition, it follows that any commutative ring R which
is not von Neumann regular has a simple-direct-injective R-module M such that
M/N is not simple-direct-injective for some submodule N of M . Next, we provide
an explicit example.



530 D. Keskin Tütüncü and R. Tribak

Example 3.12. Let R be a commutative ring having a maximal ideal m such that
mk 6= mk+1 for some integer k ≥ 1 (for example, we can take a discrete valuation
ring with maximal ideal m). Consider the R-module M = R/m ⊕ R/mk+1. It
is easily seen that 0 6= mk/mk+1 ⊆ Soc(R/mk+1). So R/mk+1 contains a simple
submodule S which is isomorphic to R/m ⊕ 0 but 0 ⊕ S is not a direct summand
of M . Therefore M is not simple-direct-injective. On the other hand, it is clear
that M ∼= R(2)/(m⊕mk+1). Moreover, since R is commutative, R is simple-direct-
injective and so R(2) is a simple-direct-injective R-module by [4, Theorem 2.14].

4. Simple-Direct-Injective Modules over Dedekind Domains

This small section is devoted to the study of simple-direct-injective modules
over commutative Dedekind domains.

Let M be a module over a commutative domain R. We denote by T (M) the
set of all elements x of M for which AnnR(x) 6= 0. It is well known that T (M) is
a submodule of M which is called the torsion submodule of M . The module M is
said to be a torsion module if T (M) = M . If T (M) = 0, the module M is said to
be torsion-free. We begin by some examples of simple-direct-injective modules over
a commutative domain.

Remark 4.1. Let R be a commutative domain with quotient field Q such that
R 6= Q.

(i) Since RR is an indecomposable R-module, it follows that RR is a simple-
direct-injective R-module (see [4, Example 2.3(1)]). Hence, every projective
R-module is simple-direct-injective by [4, Corollary 2.15].

(ii) All torsion-free R-modules are simple-direct-injective since they have no sim-
ple submodules.

(iii) If R is a Dedekind domain, then for any index set I, the R-module M =
(Q/R)(I) is simple-direct-injective since M is injective.

Let R be a commutative Dedekind domain with quotient field Q and let M be an
R-module. Let p be a nonzero prime ideal of R. The set Tp(M) = {x ∈M | xpk = 0
for some non-negative integer k} is a submodule of M which is called the p-primary
component of M . It is well known that every torsion R-module is a direct sum of
its p-primary components. The set of all nonzero prime ideals of R is denoted by
P.

In [3, Theorem 2], the authors characterized simple-direct-injective abelian
groups. The next theorem is an extension of this characterization.

Theorem 4.2. Let R be a commutative Dedekind domain. Let P be the set of all
nonzero prime ideals of R. Then the following are equivalent for an R-module M :

(i) M is simple-direct-injective;

(ii) T (M) is simple-direct-injective;
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(iii) For every p ∈ P, the p-primary component Tp(M) is simple-direct-injective;

(iv) For every p ∈ P, Tp(M) is semisimple or Soc(Tp(M)) ⊆ Rad(Tp(M));

(v) For every p ∈ P, Tp(M) is semisimple or Tp(M) has no simple direct sum-
mands.

Proof. (i) ⇔ (ii) This follows from [3, Corollary 5].
(ii) ⇒ (iii) This follows by using [3, Lemma 6] since each Tp(M) (p ∈ P) is a

direct summand of T (M).
(iii) ⇒ (ii) By Proposition 3.8.
(iv) ⇔ (v) This follows from the fact that any simple submodule S of a module

M is either small in M or a direct summand of M .
(iii) ⇒ (v) Let p ∈ P. Assume that Tp(M) has a simple direct summand S but

Tp(M) is not semisimple. Then S ∼= R/p and Tp(M) = S ⊕E for some submodule
E of Tp(M). It is clear that E is not semisimple. Therefore there exists x ∈ E
such that xR ∼= R/pn for some integer n ≥ 2. Note that xR is an indecomposable
R-module which is not simple. It is easily seen that xR contains a simple submodule
S′ which is isomorphic to R/p. Since Tp(M) is simple-direct-injective and S ∼= S′,
it follows that S′ is a direct summand of Tp(M) and hence S′ is a direct summand
of xR, a contradiction.

(v) ⇒ (iii) This is immediate.

Let R be a commutative domain with field of fractions Q. Recall that an R-
submodule F ofQ is called a fractional ideal ofR if rF ⊆ R for some nonzero element
r of R. As an application of Theorem 4.2, the next corollary characterizes finitely
generated simple-direct-injective modules over commutative Dedekind domains.

Corollary 4.3. Let R be a commutative Dedekind domain and let M be a finitely
generated R-module. Then M is simple-direct-injective if and only if

M ∼= (R/q1)(m1) ⊕ · · · ⊕ (R/qs)
(ms) ⊕ (R/p1

n1)⊕ · · · ⊕ (R/pt
nt)⊕ I1 ⊕ · · · ⊕ Ik,

where k, s and t are non-negative integers, qi (1 ≤ i ≤ s) and pi (1 ≤ i ≤ t) are
nonzero prime ideals of R such that qi 6= pj for all (i, j) ∈ {1, . . . , s} × {1, . . . , t},
mi (1 ≤ i ≤ s) and ni (1 ≤ i ≤ t) are positive integers, and Ij (1 ≤ j ≤ k) are
nonzero fractional ideals of R.

Proof. The necessity follows from [14, Theorem 6.16], Example 3.12 and [3, Lemma
6]. Conversely, suppose that M satisfies the stated conditions. Then clearly,

T (M) ∼= (R/q1)(m1) ⊕ · · · ⊕ (R/qs)
(ms) ⊕ (R/p1

n1)⊕ · · · ⊕ (R/pt
nt).

It is easily seen that for each nonzero prime ideal p of R, we have either
Soc(Tp(M)) = Tp(M) or Soc(Tp(M)) ⊆ Rad(Tp(M)). Thus M is simple-direct-
injective by Theorem 4.2.
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Example 4.4. Let R be a commutative Dedekind domain with quotient field Q.
Let P denote the set of all nonzero prime ideals of R.

(i) Let an R-module M = M1 ⊕M2 be a direct sum of submodules M1 and
M2 such that M1 is torsion-free and M2 is semisimple. Then T (M) = M2. From
Theorem 4.2, we infer that M is a simple-direct-injective module.

(ii) Consider the R-module M =
∏

p∈PR/p. Clearly, T (M) = ⊕p∈PR/p is
simple-direct-injective. Thus M is also simple-direct-injective by Theorem 4.2.

5. Simple-Direct-Injective Rings

A ring R is called left (right) simple-direct-injective if the left (right) R-module

RR (RR) is simple-direct-injective. We begin by providing examples of left (and
right) simple-direct-injective rings.

Example 5.1. (i) It is clear that semisimple rings, local rings and von Neumann
regular rings are left and right simple-direct-injective.

(ii) It is clear that a left (right) V-ring is a left (right) simple-direct-injective
ring.

(iii) Recall that a ring R is said to be left (right) Kasch if every simple left
(right) R-module can be embedded in RR (RR). By [13, Proposition 1.46], every
left (right) Kasch ring is right (left) simple-direct-injective.

Next, we exhibit some examples to illustrate that the property of being a simple-
direct-injective ring is not left-right symmetric.

Example 5.2. (i) Here we are using the ring R given in [10, Examples 8.29(6)];
that is, R is the ring of matrices of the form

γ =


a 0 b c
0 a 0 d
0 0 a 0
0 0 0 e


over a division ring D. It is shown in [10, Examples 8.29(6)] that Soc(RR) =
Rad(R). Thus the left R-module RR has no simple direct summands. Therefore
R is left simple-direct-injective. On the other hand, let us show that R is not a

right simple-direct-injective ring. Consider the elements r1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 and

r2 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 of R. It is easily seen that r1 is an idempotent of R and r1R

is a simple direct summand of RR. In addition, r2R is a simple submodule of RR
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which is isomorphic to r1R. Note that r2R is not a direct summand of RR since
r2R contains no nonzero idempotents of R. This proves that the ring R is not right
simple-direct-injective.

(ii) Consider the ring R =

[
Z2 Z2

0 Z

]
where Z2 = Z/2Z. Then the set of

all idempotents of R is

{[
0 0
0 0

]
,

[
0 0
0 1

]
,

[
1 0
0 0

]
,

[
0 1
0 1

]
,

[
1 1
0 0

]
,

[
1 0
0 1

]}
. Thus

the direct summands of the right R-module RR are:

[
0 0
0 0

]
R,

[
0 0
0 1

]
R =[

0 0
0 Z

]
,

[
0 1
0 1

]
R =

{[
0 n
0 n

]
| n ∈ Z

}
,

[
1 0
0 0

]
R =

[
1 1
0 0

]
R =

[
Z2 Z2

0 0

]
and

[
1 0
0 1

]
R = R. It is obvious that none of them is simple. Therefore R is a right

simple-direct-injective ring. On the other hand, note that R

[
1 0
0 0

]
=

[
Z2 0
0 0

]
is a simple direct summand of the left R-module RR. Moreover, the submodules[
Z2 0
0 0

]
and

[
0 Z2

0 0

]
of RR are isomorphic. But

[
0 Z2

0 0

]
is not a direct summand

of RR since it contains no nonzero idempotents of R. Therefore R is not a left
simple-direct-injective ring.

Next, we present an example of a ring R which is neither left simple-direct-
injective nor right simple-direct-injective. This example shows also that a direct
sum of two simple-direct-injective modules need not be simple-direct-injective, in
general (see also Example 2.6).

Example 5.3. Let R =

[
F F
0 F

]
, where F is a field. Then the set of all idempotents

of R is {[
0 0
0 0

]
,

[
0 b
0 1

]
,

[
1 b
0 0

]
,

[
1 0
0 1

]
| b ∈ F

}
.

Note that

[
0 0
0 1

]
R =

[
0 0
0 F

]
∼=
[
0 F
0 0

]
is a simple right R-module. In

addition,

[
0 0
0 F

]
is a direct summand of the right R-module RR but

[
0 F
0 0

]
is

not. This implies that the ring R is not right simple-direct-injective. Similarly,[
0 F
0 0

]
∼= R

[
1 0
0 0

]
=

[
F 0
0 0

]
is a simple left R-module. Moreover,

[
F 0
0 0

]
is a

direct summand of the left R-module RR but

[
0 F
0 0

]
is not. Therefore R is not a

left simple-direct-injective ring.

On the other hand, note that RR =

[
0 0
0 F

]
⊕
[
F F
0 0

]
. Moreover, U =

[
0 0
0 F

]
is a simple right R-module and V =

[
F F
0 0

]
is an injective right R-module as V is
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a direct summand of E(RR) =

[
F F
F F

]
. In particular, U and V are simple-direct-

injective right R-modules.

Let x be an element of a ring R. We denote by AnnR(x) the right annihilator
of x in R, that is, AnnR(x) = {r ∈ R | xr = 0}. Next, we show that the class of
left (right) simple-direct-injective rings is closed under direct products.

Proposition 5.4. Let {Ri | i ∈ I} be a family of rings and R =
∏

i∈I Ri. Then
R is a right simple-direct-injective ring if and only if each Ri (i ∈ I) is a right
simple-direct-injective ring.

Proof. Suppose that R is a right simple-direct-injective ring and fix j ∈ I. Then Rj

regarded as a right R-module is simple-direct-injective since it is a direct summand
of RR (see [3, Lemma 6]). Moreover, it is easily seen that the submodules of Rj

are the same whether it is regarded as a right R-module or as a right Rj-module.
Thus Rj regarded as a right Rj-module is also a simple-direct-injective module.
Conversely, assume that each Ri is a right simple-direct-injective ring. Let S and
E be simple submodules of the right R-module RR with S ∼= E ≤d RR. Clearly,
E = eR for some nonzero idempotent e of R. Let f : S → E be an R-isomorphism
and let s = (si)i∈I ∈ R such that s ∈ S and f(s) = e. Then s 6= 0 and sR = S.
Since R/AnnR(s) ∼= S, AnnR(s) =

∏
i∈I AnnRi(si) is a maximal right ideal of R.

It is easily seen that the right R-modules R/AnnR(s) and
∏

i∈I Ri/AnnRi
(si) are

isomorphic. So there exists j ∈ I such that AnnRj
(sj) is a maximal right ideal of

Rj and AnnRi
(si) = Ri for all i 6= j. Hence si = 0 for all i 6= j and sjRj is a simple

submodule of the right Rj-module Mj = RjRj
. Now let (ei)i∈I ∈ R such that

e = (ei)i∈I . It is clear that AnnR(e) = AnnR(s) and hence ei = 0 for all i 6= j and
sjRj

∼= ejRj (as right Rj-modules). Since Rj is right simple-direct-injective and ej
is an idempotent of Rj , it follows that sjRj is a direct summand of Mj . Therefore
sR is a direct summand of RR. Consequently, R is right simple-direct-injective.

As an application of the preceding proposition, we obtain the following examples
of left (and right) simple-direct-injective rings.

Example 5.5. (i) Every direct product of right indecomposable rings (e.g., local
rings) is a right simple-direct-injective ring.

(ii) Every direct product of copies of the ring R given in Example 5.2(i) is a left
simple-direct-injective ring which is not a right simple-direct-injective ring.

In the next proposition, we provide some necessary conditions for the endomor-
phism ring of a module to be right simple-direct-injective. Its proof is similar in
spirit to that of [12, Proposition 4.6]. We first prove the following lemma.

Lemma 5.6. Let R be a ring and let M be an R-module with S = EndR(M). Let
e and f be idempotents in S. Then:

(i) If e(M) is a simple R-module, then eS is a minimal right ideal of S.
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(ii) If e(M) ∩ f(M) = 0, then eS ∩ fS = 0.

Proof. (i) Suppose that e(M) is a simple R-module. Let 0 6= s = es ∈ eS. Then
0 6= s(M) ⊆ e(M). As e(M) is simple, we have s(M) = e(M) is a direct summand of
M . Hence sS = eS by [12, Lemma 1.1]. This implies that eS is a simple S-module.

(ii) Assume that e(M)∩ f(M) = 0. Suppose on the contrary that eS ∩ fS 6= 0.
Let 0 6= s ∈ eS∩fS. Then es = s and fs = s and hence s(M) ⊆ e(M)∩f(M). But
s(M) 6= 0. So e(M) ∩ f(M) 6= 0, a contradiction. It follows that eS ∩ fS = 0.

Proposition 5.7. Let R be a ring and let M be an R-module with S = EndR(M).
If the ring S is right simple-direct-injective, then M and S satisfy the following two
conditions:

(a) M is a simple-direct-injective R-module, and

(b) for every pair of idempotents e, f ∈ S with eS ∩ fS = 0, we have e(M) ∩
f(M) = 0.

The converse holds when the following condition is satisfied:

(c) For any idempotent e ∈ S such that eS is a minimal right ideal of S, e(M)
is a simple R-module.

Proof. Assume that S is a right simple-direct-injective ring. Let e and f be idem-
potents in S such that e(M) and f(M) are simple and e(M) ∩ f(M) = 0. Then
eS and fS are minimal right ideals of S with eS ∩ fS = 0 by Lemma 5.6. Apply-
ing Theorem 3.2, there exist orthogonal idempotents g, h ∈ S such that eS = gS
and fS = hS. By using again Theorem 3.2, we deduce that M is a simple-direct-
injective R-module. This proves (a).

Now to prove (b), let e and f be idempotents in S such that eS∩fS = 0. Since
the right S-module SS is simple-direct-injective, there exist orthogonal idempotents
g, h ∈ S such that eS = gS and fS = hS by Theorem 3.2. Thus e(M) = g(M) and
f(M) = h(M) by [12, Lemma 1.1]. Hence e(M) ∩ f(M) = g(M) ∩ h(M) = 0 as g
and h are orthogonal.

The converse follows by Theorem 3.2.

The following example shows that the condition (c) in Proposition 5.7 is not
necessary for the endomorphism ring of a module to be right simple-direct-injective.

Example 5.8. Consider the ring R =

[
F F
0 F

]
, where F is a field. Then the

right R-module M =

[
F F
0 0

]
is an indecomposable module which is not simple.

Moreover, we have S = EndR(M) ∼= F (as rings). Clearly, S is a right simple-direct-
injective ring. On the other hand, the right ideal 1MS is minimal, but 1M (M) = M
is not a simple R-module.
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Let R be a ring and M an R-R-bimodule. Then the trivial extension R ∝ M
is a ring whose underlying group is R × M with the multiplication defined by
(r,m)(s, n) = (rs, rn+ms), where r, s ∈ R and m,n ∈M .

Proposition 5.9. Let R be a ring and let M be an R-R-bimodule such that eM(1−
e) = 0 for any idempotent e ∈ R. If R is a right simple-direct-injective ring, then
so is the ring T = R ∝M .

Proof. Suppose that R is right simple-direct-injective and let A be a simple direct
summand of the right T -module TT . From [6, Proof of Proposition 4.5], it follows
that A = (eR, eM) for some nonzero idempotent e of R. But (0, eM) is a proper T -
submodule of A. Then (0, eM) = 0 and hence A = (eR, 0). Let B be another simple
direct summand of TT such that A∩B = 0. As above B = (fR, 0) for some nonzero
idempotent f of R with fM = 0. Thus A⊕B = (eR, 0)⊕ (fR, 0) = (eR + fR, 0).
Moreover, it is easily checked that eR and fR are minimal right ideals of R with
eR ∩ fR = 0. Since R is a right simple-direct-injective ring, eR + fR is a direct
summand of the right R-module RR. Therefore there exists an idempotent g of R
such that (eR+fR)⊕gR = R. This implies that (A⊕B)⊕(gR,M) = T . It follows
that T is a right simple-direct-injective ring.
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