• Title/Summary/Keyword: Learning data set

Search Result 1,114, Processing Time 0.029 seconds

Use of deep learning in nano image processing through the CNN model

  • Xing, Lumin;Liu, Wenjian;Liu, Xiaoliang;Li, Xin;Wang, Han
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.185-195
    • /
    • 2022
  • Deep learning is another field of artificial intelligence (AI) utilized for computer aided diagnosis (CAD) and image processing in scientific research. Considering numerous mechanical repetitive tasks, reading image slices need time and improper with geographical limits, so the counting of image information is hard due to its strong subjectivity that raise the error ratio in misdiagnosis. Regarding the highest mortality rate of Lung cancer, there is a need for biopsy for determining its class for additional treatment. Deep learning has recently given strong tools in diagnose of lung cancer and making therapeutic regimen. However, identifying the pathological lung cancer's class by CT images in beginning phase because of the absence of powerful AI models and public training data set is difficult. Convolutional Neural Network (CNN) was proposed with its essential function in recognizing the pathological CT images. 472 patients subjected to staging FDG-PET/CT were selected in 2 months prior to surgery or biopsy. CNN was developed and showed the accuracy of 87%, 69%, and 69% in training, validation, and test sets, respectively, for T1-T2 and T3-T4 lung cancer classification. Subsequently, CNN (or deep learning) could improve the CT images' data set, indicating that the application of classifiers is adequate to accomplish better exactness in distinguishing pathological CT images that performs better than few deep learning models, such as ResNet-34, Alex Net, and Dense Net with or without Soft max weights.

Improved Network Intrusion Detection Model through Hybrid Feature Selection and Data Balancing (Hybrid Feature Selection과 Data Balancing을 통한 효율적인 네트워크 침입 탐지 모델)

  • Min, Byeongjun;Ryu, Jihun;Shin, Dongkyoo;Shin, Dongil
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.2
    • /
    • pp.65-72
    • /
    • 2021
  • Recently, attacks on the network environment have been rapidly escalating and intelligent. Thus, the signature-based network intrusion detection system is becoming clear about its limitations. To solve these problems, research on machine learning-based intrusion detection systems is being conducted in many ways, but two problems are encountered to use machine learning for intrusion detection. The first is to find important features associated with learning for real-time detection, and the second is the imbalance of data used in learning. This problem is fatal because the performance of machine learning algorithms is data-dependent. In this paper, we propose the HSF-DNN, a network intrusion detection model based on a deep neural network to solve the problems presented above. The proposed HFS-DNN was learned through the NSL-KDD data set and performs performance comparisons with existing classification models. Experiments have confirmed that the proposed Hybrid Feature Selection algorithm does not degrade performance, and in an experiment between learning models that solved the imbalance problem, the model proposed in this paper showed the best performance.

A Study on Reliability Analysis According to the Number of Training Data and the Number of Training (훈련 데이터 개수와 훈련 횟수에 따른 과도학습과 신뢰도 분석에 대한 연구)

  • Kim, Sung Hyeock;Oh, Sang Jin;Yoon, Geun Young;Kim, Wan
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.1
    • /
    • pp.29-37
    • /
    • 2017
  • The range of problems that can be handled by the activation of big data and the development of hardware has been rapidly expanded and machine learning such as deep learning has become a very versatile technology. In this paper, mnist data set is used as experimental data, and the Cross Entropy function is used as a loss model for evaluating the efficiency of machine learning, and the value of the loss function in the steepest descent method is We applied the Gradient Descent Optimize algorithm to minimize and updated weight and bias via backpropagation. In this way we analyze optimal reliability value corresponding to the number of exercises and optimal reliability value without overfitting. And comparing the overfitting time according to the number of data changes based on the number of training times, when the training frequency was 1110 times, we obtained the result of 92%, which is the optimal reliability value without overfitting.

Dataset Construction of Taekwondo Beginner AI (태권도 초심자를 위한 AI의 DataSet 구축)

  • Cho, Kyu Cheol;Kim, Ju Yeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.249-252
    • /
    • 2022
  • 세계 태권도 연맹은 국제 축구 연맹의 가입국과 동일한 수의 가입국을 보유할 만큼 태권도는 점점 더 세계적으로 나아가고 있다. 하지만 태권도의 교육방법은 예전과 다르지 않다. 도장의 관장이나 사범이 직접 자세를 눈으로 보고 판단하여 지도해야 한다. 본 연구는 기술이 발전하고 변화함에 따라 태권도를 조금 더 다양하고 흥미롭게 배울 수 있는 방법을 개발하고자 진행하였다. 본 논문에서는 피사체 모델을 촬영하여 이미지를 추출하고 이미지에서 사람의 관절 KeyPoint를 라벨링 한 후 이를 바탕으로 COCO 형식의 DataSet을 만들어낸다. 이후 이 DataSet을 기계에 학습을 시킨다면 초심자를 위한 교육용 태권도 AI가 만들어질 수 있다. 또한, 기계학습 이후 이 AI를 실제 교육현장에 적용하여 교육과정에 직접 사용할 수 있으며 이 AI를 바탕으로 교육용 게임 개발 등 다양한 방면으로 활용할 수 있을 것이라고 기대한다.

  • PDF

Detecting Jaywalking Using the YOLOv5 Model

  • Kim, Hyun-Tae;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.300-306
    • /
    • 2022
  • Currently, Korea is building traffic infrastructure using Intelligent Transport Systems (ITS), but the pedestrian traffic accident rate is very high. The purpose of this paper is to prevent the risk of traffic accidents by jaywalking pedestrians. The development of this study aims to detect pedestrians who trespass using the public data set provided by the Artificial Intelligence Hub (AIHub). The data set uses training data: 673,150 pieces and validation data: 131,385 pieces, and the types include snow, rain, fog, etc., and there is a total of 7 types including passenger cars, small buses, large buses, trucks, large trailers, motorcycles, and pedestrians. has a class format of Learning is carried out using YOLOv5 as an implementation model, and as an object detection and edge detection method of an input image, a canny edge model is applied to classify and visualize human objects within the detected road boundary range. In this study, it was designed and implemented to detect pedestrians using the deep learning-based YOLOv5 model. As the final result, the mAP 0.5 showed a real-time detection rate of 61% and 114.9 fps at 338 epochs using the YOLOv5 model.

Evaluating Usefulness of Deep Learning Based Left Ventricle Segmentation in Cardiac Gated Blood Pool Scan (게이트심장혈액풀검사에서 딥러닝 기반 좌심실 영역 분할방법의 유용성 평가)

  • Oh, Joo-Young;Jeong, Eui-Hwan;Lee, Joo-Young;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.151-158
    • /
    • 2022
  • The Cardiac Gated Blood Pool (GBP) scintigram, a nuclear medicine imaging, calculates the left ventricular Ejection Fraction (EF) by segmenting the left ventricle from the heart. However, in order to accurately segment the substructure of the heart, specialized knowledge of cardiac anatomy is required, and depending on the expert's processing, there may be a problem in which the left ventricular EF is calculated differently. In this study, using the DeepLabV3 architecture, GBP images were trained on 93 training data with a ResNet-50 backbone. Afterwards, the trained model was applied to 23 separate test sets of GBP to evaluate the reproducibility of the region of interest and left ventricular EF. Pixel accuracy, dice coefficient, and IoU for the region of interest were 99.32±0.20, 94.65±1.45, 89.89±2.62(%) at the diastolic phase, and 99.26±0.34, 90.16±4.19, and 82.33±6.69(%) at the systolic phase, respectively. Left ventricular EF was calculated to be an average of 60.37±7.32% in the ROI set by humans and 58.68±7.22% in the ROI set by the deep learning segmentation model. (p<0.05) The automated segmentation method using deep learning presented in this study similarly predicts the average human-set ROI and left ventricular EF when a random GBP image is an input. If the automatic segmentation method is developed and applied to the functional examination method that needs to set ROI in the field of cardiac scintigram in nuclear medicine in the future, it is expected to greatly contribute to improving the efficiency and accuracy of processing and analysis by nuclear medicine specialists.

A Comparative Analysis of Personalized Recommended Model Performance Using Online Shopping Mall Data (온라인 쇼핑몰 데이터를 이용한 개인화 추천 모델 성능 비교 분석)

  • Oh, Jaedong;Oh, Ha-young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1293-1304
    • /
    • 2022
  • The personalization recommendation system means analyzing each individual's interests or preferences and recommending information or products accordingly. These personalized recommendations can reduce the time consumers spend searching for information by accessing the products they need more quickly, and companies can increase corporate profits by recommending appropriate products that meet their needs. In this study, products are recommended to consumers using collaborative filtering, matrix factorization, and deep learning, which are representative personalization recommendation techniques. To this end, the data set after purchasing shopping mall products, which is raw data, is pre-processed in the form of transmitting the data set to the input of the recommended system, and the pre-processed data set is analyzed from various angles. In addition, each model performs verification and performance comparison on the recommended results, and explores the model with optimal performance, suggesting which model should be used when building the recommendation system at the mall.

The effects of corpus-based vocabulary tasks on high school students' English vocabulary learning and attitude (코퍼스를 기반으로 한 어휘 과제가 고등학생의 영어 어휘 학습과 태도에 미치는 영향)

  • Lee, Hyun Jin;Lee, Eun-Joo
    • English Language & Literature Teaching
    • /
    • v.16 no.4
    • /
    • pp.239-265
    • /
    • 2010
  • This study investigates the effects of corpus-based vocabulary tasks on the acquisition of English vocabulary in an attempt to explore the influence of corpus use on EFL pedagogy. For this to be realized, a total of 40 Korean high school students participated in the study over a 4-week period. An experimental group used a set of corpus-based tasks for vocabulary learning, whereas a control group carried out a traditional task (i.e., the L1-L2 translation) for vocabulary learning. To assess learning gains, the students were asked to complete the pre- and post-treatment tests measuring the word form, meaning, and use aspects of target lexical items. Results of the study indicate that in the experimental group the corpus-based vocabulary tasks were beneficial for the learning of word forms and use. In particular, corpus-based benefits were greatest in the low-proficiency EFL learners' collocational aspects of vocabulary use. On the other hand, in the control group, the traditional vocabulary tasks benefited the meaning aspects of target vocabulary items the most. In addition, survey results revealed that most students were positive about the corpus-based learning experience although some expressed reservations about the heavy cognitive load and the time-consuming nature of the analysis of corpus data primarily due to learners' lack of language proficiency.

  • PDF

Image-based Artificial Intelligence Deep Learning to Protect the Big Data from Malware (악성코드로부터 빅데이터를 보호하기 위한 이미지 기반의 인공지능 딥러닝 기법)

  • Kim, Hae Jung;Yoon, Eun Jun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.76-82
    • /
    • 2017
  • Malware, including ransomware to quickly detect, in this study, to provide an analysis method of malicious code through the image analysis that has been learned in the deep learning of artificial intelligence. First, to analyze the 2,400 malware data, and learning in artificial neural network Convolutional neural network and to image data. Extracts subgraphs to convert the graph of abstracted image, summarizes the set represent malware. The experimentally analyzed the malware is not how similar. Using deep learning of artificial intelligence by classifying malware and It shows the possibility of accurate malware detection.

Combining Machine Learning Techniques with Terrestrial Laser Scanning for Automatic Building Material Recognition

  • Yuan, Liang;Guo, Jingjing;Wang, Qian
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.361-370
    • /
    • 2020
  • Automatic building material recognition has been a popular research interest over the past decade because it is useful for construction management and facility management. Currently, the extensively used methods for automatic material recognition are mainly based on 2D images. A terrestrial laser scanner (TLS) with a built-in camera can generate a set of coloured laser scan data that contains not only the visual features of building materials but also other attributes such as material reflectance and surface roughness. With more characteristics provided, laser scan data have the potential to improve the accuracy of building material recognition. Therefore, this research aims to develop a TLS-based building material recognition method by combining machine learning techniques. The developed method uses material reflectance, HSV colour values, and surface roughness as the features for material recognition. A database containing the laser scan data of common building materials was created and used for model training and validation with machine learning techniques. Different machine learning algorithms were compared, and the best algorithm showed an average recognition accuracy of 96.5%, which demonstrated the feasibility of the developed method.

  • PDF