References
- National Cancer Center. Cancer registration statistics. Trends in the incidence of breast cancer (1999-2018).
- Abdel-Qadir H, Thavendiranathan P, Austin PC, Lee DS, Amir E, Tu JV, et al. The risk of heart failure and other cardiovascular hospitalizations after early stage breast cancer: A matched cohort study. JNCI: Journal of the National Cancer Institute. 2019;111(8):854-62. https://doi.org/10.1093/jnci/djy218
- Go CS. Nuclear Medicine. 1st ed. Korea Medical Book; 1992:320-330.
- Hong YM, Chung EC. Comparison between Echocardiography and Cardiac Cine-MRI: Left Ventricular Volume and Cardiac Output. The Ewha Medical Journal. 1992;15(4):327-35. https://doi.org/10.12771/emj.1992.15.4.327
- Kim JY, Kang CK, Kim YJ, Park HH, Kim JS, Lee CH. Study the Analysis of Comparison with AROI and MROI Mode in Gated Cardiac Blood Pool Scan. The Korean Journal of Nuclear Medicine Technology. 2008;12(3):222-8.
- Frangi AF, Niessen WJ, Viergever MA. Three-dimensional modeling for functional analysis of cardiac images: A review. IEEE Trans Med Imaging. 2001;20(1):2-5. https://doi.org/10.1109/42.906421
- Liao S, Gao Y, Oto A, Shen D. Representation learning: A unified deep learning framework for automatic prostate MR segmentation. Med Image Comput Comput Assist Interv. 2013;16(Pt 2):254-61.
- Wu G, Kim M, Wang Q, Gao Y, Liao S, Shen D. Unsupervised deep feature learning for deformable registration of MR brain images. Med Image Comput Comput Assist Interv. 2013;16(Pt 2):649-56.
- Chen C, Qin C, Qiu H, Tarroni G, Duan J, Bai W, et al. Deep Learning for Cardiac Image Segmentation: A Review. Front Cardiovasc Med. 2020;7:25. https://doi.org/10.3389/fcvm.2020.00025
- Lim SH, Lee MS. Fully Automatic Heart Segmentation Model Analysis Using Residual Multi-Dilated Recurrent Convolutional U-Net. KIPS Transactions on Computer and Communication Systems. 2020;9(2):37-44. https://doi.org/10.3745/KTCCS.2020.9.2.37
- Koo HJ, Lee JG, Ko JY, Lee G, Kang JW, Kim YH, et al. Automated Segmentation of Left Ventricular Myocardium on Cardiac Computed Tomography Using Deep Learning. Korean J Radiol. 2020;21(6):660-9. https://doi.org/10.3348/kjr.2019.0378
- Saito S, Nakajima K, Edenbrandt L, Enqvist O, UlUn J, Kinuya S. Convolutional neural network-based automatic heart segmentation and quantitation in. EJNMMI Res. 2021;11(1):105. https://doi.org/10.1186/s13550-021-00847-x
- Ronneberger O, Fischer P, Brox T. eds. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2015.
- Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2016;39(4):640-51. https://doi.org/10.1109/TPAMI.2016.2572683
- Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. Intell. Robot. Appl. 2018;34:833-51.
- Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. eds. Encoder-decoder with atrous separable convolution for semantic image segmentation. Proceedings of the European Conference on Computer Vision(ECCV). 2018.
- Russell B, Torralba A, Murphy K, Freeman W. Labelme: A database and web-based tool for image annotation. Int. Journal of Computer Vision. 2007; 77.
- Minaee S, Boykov YY, Porikli F, Plaza AJ, Kehtarnavaz N, Terzopoulos D. Image segmentation using deep learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2021.
- Kim JH, Kim SH, Kim JH, Choi HI. Post-processing Algorithm Based on Edge Information to Improve the Accuracy of Semantic Image Segmentation. The Journal of the Korea Contents Association. 2021;21(3):23-32. https://doi.org/10.5392/JKCA.2021.21.03.023
- Choi HY, Kim DE, Jeong JH, Yun SH, Kim YS, Won WJ. The Study on Ejection Fraction Change According to Patient Position Difference in Gated Blood Pool Scan. The Korean Journal of Nuclear Medicine Technology. 2012;16(1):91-5.
- Okada R, Kirshenbaum H, Kushner F, Strauss H, Dinsmore R, Newell J, et al. Observer variance in the qualitative evaluation of left ventricular wall motion and the quantitation of left ventricular ejection fraction using rest and exercise multigated blood pool imaging. Circulation. 1980;61(1):128-36. https://doi.org/10.1161/01.CIR.61.1.128