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Abstract: Automatic building material recognition has been a popular research interest over the past 
decade because it is useful for construction management and facility management. Currently, the 
extensively used methods for automatic material recognition are mainly based on 2D images. A 
terrestrial laser scanner (TLS) with a built-in camera can generate a set of coloured laser scan data that 
contains not only the visual features of building materials but also other attributes such as material 
reflectance and surface roughness. With more characteristics provided, laser scan data have the potential 
to improve the accuracy of building material recognition. Therefore, this research aims to develop a 
TLS-based building material recognition method by combining machine learning techniques. The 
developed method uses material reflectance, HSV colour values, and surface roughness as the features 
for material recognition. A database containing the laser scan data of common building materials was 
created and used for model training and validation with machine learning techniques. Different machine 
learning algorithms were compared, and the best algorithm showed an average recognition accuracy of 
96.5%, which demonstrated the feasibility of the developed method. 
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1. INTRODUCTION 

In the past decade, automatic building material recognition (a term used interchangeably with 
classification in the computer vision community) based on the state-of-the-art information technologies 
has been a promising research direction in the architecture, engineering, and construction (AEC) 
industry. Automatic material recognition can improve the efficiency of a variety of tasks, including 
damage detection and onsite material management and tracking [1,2]. Moreover, it has been an 
important task to generate as-is building information models (BIMs) that reflect the as-is conditions of 
facilities, which can be applied for various applications such as construction progress management, 
operation and maintenance (O&M) of existing buildings, and building performance analysis [3,4]. An 
as-is BIM, which can be applied for various applications such as construction progress management, 
operation and maintenance (O&M) of existing buildings, and building performance analysis [3,4], 
contains not only the geometric information of a building but also non-geometric information of building 
elements including building materials [5]. The material information is essential for many BIM 
applications such as building energy simulation and facility maintenance and repair. Therefore, there is 
a high demand for automatic building material recognition in order to generate semantically rich as-is 
BIMs containing material information.  

Applying machine learning techniques for automatic building material recognition has been a popular 
approach over the past years. Currently, the proposed material recognition methods are mainly based on 
2D images. The core technique of image-based methods focuses on using the visual features of building 
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materials such as colour, texture, roughness, and projection [3,6,7] for automatic recognition. However, 
image-based methods are heavily influenced by illumination conditions. Different illumination 
conditions strongly affect the visual characteristics of materials, causing difficulty for image-based 
building material recognition. Moreover, poor textures on objects and unknown viewpoints also 
negatively affect the robustness and accuracy of image-based material recognition [7]. 

Considering the potential of terrestrial laser scanning (TLS) for automatic building material 
recognition, this research aims to develop an automatic building material recognition approach based 
on TLS. A TLS with a built-in camera can capture not only the visual features but also intrinsic 
properties of building materials such as the material reflectance. Meanwhile, unlike passive imaging 
which is critically dependent on environmental lighting conditions, TLS uses an active measurement 
technique with infrared lights, which is not affected by environmental illumination conditions [8]. 
Therefore, TLS has great potentials to achieve more accurate material recognition considering the more 
types of information provided and higher robustness to changeable lighting conditions.  

Moreover, TLS has been extensively adopted for as-is BIMs reconstruction due to its high 
measurement accuracy and speed [5]. As a result, using laser scan data for building material recognition 
does not require extra data collection if laser scan data are already collected for as-is BIMs 
reconstruction. Despite the advantages of TLS, few previous studies have adopted TLS for building 
material recognition.  

2. RELATED WORKS 

Image-based material recognition using computer vision techniques has been the dominant non-
destructive material recognition method. Brilakis et al. [9,10] are among the first to introduce image-
based material classification techniques into the construction industry, and their ground-breaking work 
validated the feasibility of image-based recognition of construction materials. After that, different 
image-based methods were increasingly developed for highly accurate, robust, and time-efficient 
material recognition for better construction management [3,6,7,11,12].  

On the other hand, a few studies have explored building material classification based on TLS. The 
reflected intensity values collected by TLS are first adopted for material classification. For instance, 
Franceschi et al. [13] indicated that the intensity values from TLS could provide a reliable method to 
classify the rocks in outcrop conditions based on a series of experiments. Armesto González et al. [14] 
showed the potential of using the reflected intensity from TLS for the recognition and characterization 
of certain damages in building materials of historical buildings by combining digital image processing 
techniques and unsupervised classification algorithms. Riveiro et al. [15] presented a novel 
segmentation algorithm for automatic segmentation of masonry blocks from 3D laser scan data based 
on the reflected intensity values.  

In addition to the reflected intensity values, some studies have utilized the colour information 
captured by the built-in camera of TLS for material classification. For example, Hassan et al. [16] 
confirmed the availability of material identification using the reflected intensity and Red-Green-Blue 
(RGB) values from TLS by a series of experiments. The experiment results showed that the scanned 
materials had different reflected intensity distributions, and the recorded RGB colour values could be 
used as a secondary parameter for material identification. Valero et al. [17] achieved automatic 
segmentation of individual masonry units and mortar regions in digitized rubble stone constructions 
based on coloured laser scan data acquired by TLS. The scan data of the target surface was converted 
into 2D depth maps as a feature for automatic segmentation, and colour information was used as another 
feature. The experimental results demonstrated the effectiveness of the technique.  

Although image-based material recognition methods have made great advancement and are more 
extensively adopted than TLS-based methods, their applications in the real-world environment still face 
challenges due to the complex field conditions and their dependence on environmental illumination 
conditions. The ability to capture more types of information and the use of active measurement 
technique makes TLS-based material recognition more promising.  

However, the previous studies on TLS-based material recognition are either based on only laboratory 
experiments in a controlled environment [13,14,16] or for the recognition of only one or two categories 
of building materials [15,17]. To tackle the limitations of previous studies, this study examines the 
feasibility of using TLS data for the recognition of ten different common building materials in real-
world environments. 
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3. DETERMINATION AND CALCULATION OF FEATURES 

In this study, the features used for automatic building material recognition are 1) material reflectance, 
2) colour, and 3) surface roughness. For each scan point, the TLS collects a set of attributes comprising 
of the reflected laser beam intensity, RGB colour values, and x-y-z coordinates. The values of the chosen 
features can be calculated based on the collected information. The reasons for the determination of 
features and the calculation process of each feature are explained in the following subsections. 

3.1. Material reflectance 

For each scan point, the TLS provides a reflected laser intensity value (𝐼𝐼𝑟𝑟), which is determined by 
the type of material and scanning parameters. Although 𝐼𝐼𝑟𝑟 is recommended to be a feature for material 
classification in previous studies, different materials are likely to present similar 𝐼𝐼𝑟𝑟  values because 
various scanning parameters can also affect 𝐼𝐼𝑟𝑟. Instead, among all the factors that affect 𝐼𝐼𝑟𝑟, the material 
reflectance 𝜌𝜌 is the only intrinsic property of a certain material. In other words, the same material always 
has the same 𝜌𝜌 value even though other factors are varying. Therefore, the material reflectance 𝜌𝜌 is 
adopted as a feature for material recognition in this paper.  

For calculating the 𝜌𝜌 value from the TLS data, previous studies have proposed some methods [13,18], 
but these methods are not practical enough in the real-world environment because they require to place 
the same reference target in different scanning scenes to be a reference for the 𝜌𝜌 calculation of the 
scanning target.  

This study developed a reference target-free method for calculating the 𝜌𝜌  values of different 
materials. Considering the realistic scanning scenes of buildings mostly being near-distance scanning, 
this study assumes that the scanning range 𝑅𝑅 from the TLS to the scanned target is less than 10 m. For 
each laser scan point, the 𝜌𝜌 value can be calculated for material recognition in the following three steps. 
First, the neighbouring points of a scan point are obtained by finding all points within a 𝑠𝑠1 × 𝑠𝑠1 square 
that is centred at this scan point. As shown in Figure 1, all the points within the blue square become the 
neighbouring points of the blue point 𝑃𝑃𝑖𝑖. Second, the cos𝜃𝜃/𝑅𝑅2 values of the all neighbouring points are 
calculated by Equation (1) which is derived in the condition of long-distance scanning in previous 
studies [19-24]. Meanwhile, the 𝐼𝐼𝑟𝑟 values of the neighbouring points are extracted from the laser scan 
data. Third, a linear function is fitted into the cos𝜃𝜃/𝑅𝑅2 and 𝐼𝐼𝑟𝑟 values of neighbouring points according 
to Equation (2). This Equation is obtained based on a series of field tests using FARO FocusS70 laser 
scanner in this study, and the coefficient 𝜌𝜌𝐾𝐾1, 𝜌𝜌𝐾𝐾2 or  𝜌𝜌𝐾𝐾3 is obtained. Because 𝜌𝜌𝐾𝐾1, 𝜌𝜌𝐾𝐾2 or 𝜌𝜌𝐾𝐾3 is 
fixed when using the same TLS and it is difficult to estimate their specific values, 𝜌𝜌𝐾𝐾1, 𝜌𝜌𝐾𝐾2 or 𝜌𝜌𝐾𝐾3 is 
used in this study to represent 𝜌𝜌 as the material reflectance for material recognition. 

 
Figure 1. Calculation of 𝜌𝜌 based on neighbouring points of a scan point 

𝐼𝐼𝑟𝑟 = 𝜌𝜌𝜌𝜌
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅2

= 𝜌𝜌𝜌𝜌

� 𝑥𝑥2 + 𝑦𝑦2
𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2

𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2
 

(1) 

where 𝐾𝐾 is a total coefficient which comprises the transmitted intensity, the receiver aperture diameter, 
the atmospheric transmission factor, and the system transmission factor, and the 𝐾𝐾 will be a fixed value 
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when using the same TLS for scanning. 𝜃𝜃 is the laser beam incident angle on 𝐼𝐼𝑟𝑟. 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 are the Cartesian 
coordinate values of each scanned point. 

𝐼𝐼𝑟𝑟 = 𝜌𝜌𝐾𝐾1
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅2

+ 𝑏𝑏1,      4 𝑚𝑚 < 𝑅𝑅 < 10 𝑚𝑚

𝐼𝐼𝑟𝑟 = 𝜌𝜌𝐾𝐾2
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅2

+ 𝑏𝑏2, 2 𝑚𝑚 < 𝑅𝑅 < 4 𝑚𝑚

𝐼𝐼𝑟𝑟 = 𝜌𝜌𝐾𝐾3
cos𝜃𝜃
𝑅𝑅2

+ 𝑏𝑏3,                       𝑅𝑅 < 2 𝑚𝑚 ⎭
⎪
⎬

⎪
⎫

 (2) 

where 𝑏𝑏1, 𝑏𝑏2, and 𝑏𝑏3 are three different constant terms. They exist because of the equipped brightness 
reducer in the scanner to protect the scanner from extremely high received laser intensity [24,25]. 

3.2. Colour 

A TLS with a built-in camera can capture the colour information of each scan point and record as 
RGB colour space (RGB values from 0 to 255). The RGB values can potentially help in building 
material recognition. Object colours have been extensively used for not only object and material 
recognition using 2D images in the computer vision community [3-5,26], but also material classification 
using laser scan data [16,17]. According to the literature, the Hue-Saturation-Value (HSV) colour space 
is preferred than the RGB colour space because of its better robustness under variable illumination 
conditions. Therefore, this study also adopts the HSV colour space as the features for automatic building 
material recognition. The translation function from RGB to HSV is described in [27], as follows:  

                                             𝑟𝑟 =
𝑅𝑅

255
,𝑔𝑔 =

𝐺𝐺
255

, 𝑏𝑏 =
𝐵𝐵

255
𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟,𝑔𝑔, 𝑏𝑏) ,𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟,𝑔𝑔, 𝑏𝑏),∆= 𝑀𝑀𝑀𝑀 −𝑀𝑀𝑀𝑀

𝐻𝐻 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0𝑜𝑜,                                                      𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀

60𝑜𝑜 ×
𝑔𝑔 − 𝑏𝑏
∆

+ 0𝑜𝑜 ,       𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀 = 𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔 ≫ 𝑏𝑏

60𝑜𝑜 ×
𝑔𝑔 − 𝑏𝑏
∆

+ 360𝑜𝑜 ,   𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀 = 𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔 < 𝑏𝑏

60𝑜𝑜 ×
𝑏𝑏 − 𝑟𝑟
∆

+ 120𝑜𝑜 ,                        𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀 = 𝑔𝑔

60𝑜𝑜 ×
𝑟𝑟 − 𝑔𝑔
∆

+ 240𝑜𝑜 ,                       𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀 = 𝑏𝑏

                                                       𝑆𝑆 = �
0,      𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀 = 0
∆
𝑀𝑀𝑀𝑀

, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
                                                                              𝑉𝑉 = 𝑀𝑀𝑀𝑀 ⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

 (3) 

3.3. Surface roughness 

With the millimetre-level laser beam diameter, TLS can capture microscopic characteristics of 
building materials, e.g. surface roughness (𝑅𝑅𝑎𝑎). The feasibility of estimating surface roughness based 
on laser scan data has been proven by previous research efforts [28,29]. In general, each category of 
building material presents different surface roughness. Previous studies show that it is potential to utilize 
surface roughness estimated from laser scan data for material recognition. Therefore, this research also 
uses surface roughness as a feature for automatic building material recognition. 

In this study, the surface roughness 𝑅𝑅𝑎𝑎 of a scan point is calculated in the following four steps. First, 
for each scan point 𝑃𝑃𝑖𝑖, its neighbouring points are obtained as the points within the 𝑠𝑠2 × 𝑠𝑠2 square that 
is centred at this point, as shown in Figure 2. Second, a plane is fitted into the neighbouring points using 
the M-estimator SAmple Consensus (MSAC) algorithm. The fitted plane 𝑀𝑀 can be expressed as 𝐴𝐴𝐴𝐴 +
𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷 = 0. Third, the orthogonal distance 𝑑𝑑𝑖𝑖  from each neighbouring point (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) to the 
fitted plane is calculated using Equation (4): 
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𝑑𝑑𝑖𝑖 =
|𝐴𝐴𝑥𝑥𝑖𝑖 + 𝐵𝐵𝑦𝑦𝑖𝑖 + 𝐶𝐶𝑧𝑧𝑖𝑖 + 𝐷𝐷|

√𝐴𝐴2 + 𝐵𝐵2 + 𝐶𝐶2
 (4) 

Lastly, the surface roughness 𝑅𝑅𝑎𝑎  at point 𝑃𝑃𝑖𝑖  is calculated as the average 𝑑𝑑𝑖𝑖  value for all the 𝑛𝑛 
neighbouring points: 

𝑅𝑅𝑎𝑎 =
1
𝑛𝑛
�𝑑𝑑𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (5) 

 
Figure 2. Calculation of surface roughness based on neighbouring points and fitted plane 

4. EXPERIMENTS 

Taking the existing construction material libraries as a reference, we created a common building 
material set. This study considered ten different categories of materials, including concrete, mortar, 
stone, metal, painting, wood, plaster, plastic, pottery, and ceramic. Although being extensively used in 
buildings, glass is not chosen in this study because TLS has difficulty in capturing transparent objects. 
For the ten categories of materials, one specific commonly-used building material was selected from 
each category.  

A FARO FocusS70 TLS was used to collect laser scan data of the ten materials. This TLS had a 
measurement range of 0.6 to 70 m, and a field of view of 300° vertically and 360° horizontally. The 
beam diameter was 2.12 mm, and the divergence was 0.3 mrad [30]. The laser scan data of the ten 
building materials were collected from buildings in the National University of Singapore. The collected 
scan data included both building interiors (i.e. ceilings, walls, and floors) and exterior facades. The data 
processing was executed in MATLAB2019a [31] after the laser scan data were extracted from the TLS’s 
software FARO SCENE [32]. 

We created a dataset with 2 𝑚𝑚 < 𝑅𝑅 < 4𝑚𝑚 contained 41,000 data points (approximately 4,100 data 
points for each building material), and the dataset with 4 𝑚𝑚 < 𝑅𝑅 < 10 𝑚𝑚 contained 53,000 data points 
(approximately 5,300 data points for each building material). This study did not choose 𝑅𝑅 < 2 𝑚𝑚 
because the scanning scenes with it are very rare in laser scanning of buildings. Each data point 
comprised a building material category label, 𝜌𝜌 value, H, S, and V values in the HSV colour space, and 
𝑅𝑅𝑎𝑎 value. To find the best combination of features, this study tested different combinations of features 
(𝜌𝜌 , HSV values, and 𝑅𝑅𝑎𝑎 ). Besides, the 𝐼𝐼𝑟𝑟  value and RGB values were also considered in the 
comparisons. To identify the best recognition model, different supervised learning classifiers were 
explored. 

Recognition accuracy was used in this research to measure the performance of different recognition 
models. The accuracy of a recognition model can be quantified by Equation (6). 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (6) 

where TP, TN, FP, and FN are the numbers of True Positives, True Negatives, False Positives, and False 
Negatives, respectively. 

4.1. Experiment Results 

We trained different classifiers with different feature combinations in Classification Learner of 
MATLAB2019a. Two accuracy performance matrixes with different ranges of 𝑅𝑅 are obtained, as shown 
in Tables 1 and 2.  

 

Table 1. The accuracy performance matrix of building material recognition when 2 𝑚𝑚 < 𝑅𝑅 < 4 𝑚𝑚 

 
Table 2. The accuracy performance matrix of building material recognition when 4 𝑚𝑚 < 𝑅𝑅 < 10 𝑚𝑚 

 
According to Table 1, when 2 𝑚𝑚 < 𝑅𝑅 < 4 𝑚𝑚, using 𝜌𝜌, HSV, and 𝑅𝑅𝑎𝑎 as features and Ensemble as the 

classifier produced the highest recognition accuracy of 96.1%. According to Table 2, when 4 𝑚𝑚 < 𝑅𝑅 <
10 𝑚𝑚, using 𝜌𝜌, HSV, and 𝑅𝑅𝑎𝑎 as features and Ensemble as the classifier produced the highest recognition 
accuracy of 97.0%. In conclusion, using 𝜌𝜌, HSV, and 𝑅𝑅𝑎𝑎 as features and Ensemble as the classifier 
always had the highest recognition accuracy, showing an average recognition accuracy of 96.5% when 
2 𝑚𝑚 < 𝑅𝑅 < 10 𝑚𝑚. 

As mentioned above, this study used 𝜌𝜌 instead of 𝐼𝐼𝑟𝑟, and HSV instead of RGB as the features for 
material recognition. The experiments also tested the recognition accuracy when using 𝜌𝜌, 𝐼𝐼𝑟𝑟, HSV, or 
RGB as the only feature. According to Tables 1-2, using 𝜌𝜌 as the only feature had accuracies of 61.8% 

 
DTs 

(%) 

Das 

(%) 

NBs 

(%) 

SVMs 

(%) 

KNNs 

(%) 

Ensembles 

(%) 

𝝆𝝆 61.0 54.7 59.0 60.3 61.8 58.6 

𝑹𝑹𝒂𝒂 28.0 26.5 28.8 30.1 28.1 31.4 

𝑯𝑯𝑯𝑯𝑯𝑯 85.7 73.4 78.5 82.7 88.1 88.6 

𝑹𝑹𝑹𝑹𝑹𝑹 71.9 78.1 53.5 80.6 87.5 88.6 

𝑰𝑰𝒓𝒓 40.3 38.8 40.4 38.9 35.4 40.2 

𝝆𝝆 + 𝑹𝑹𝒂𝒂 69.3 53.8 65.9 63.8 72.7 70.4 

𝝆𝝆 + 𝑯𝑯𝑯𝑯𝑯𝑯 89.0 86.2 89.1 88.1 94.2 95.0 

𝑹𝑹𝒂𝒂 + 𝑯𝑯𝑯𝑯𝑯𝑯 86.2 73.5 82.5 89.1 90.0 92.5 

𝝆𝝆 + 𝑹𝑹𝒂𝒂 + 𝑯𝑯𝑯𝑯𝑯𝑯 91.0 88.7 91.2 93.1 95.2 96.1 

 
DTs 

(%) 

Das 

(%) 

NBs 

(%) 

SVMs 

(%) 

KNNs 

(%) 

Ensembles 

(%) 

𝝆𝝆 77.0 67.6 74.9 72.0 77.5 75.7 

𝑹𝑹𝒂𝒂 30.9 26.6 26.0 26.0 24.7 29.5 

𝑯𝑯𝑯𝑯𝑯𝑯 71.5 67.1 71.9 72.2 75.0 77.7 

𝑹𝑹𝑹𝑹𝑹𝑹 65.8 68.2 48.8 60.8 75.0 76.3 

𝑰𝑰𝒓𝒓 29.7 24.6 24.6 24.5 28.5 29.4 

𝝆𝝆 + 𝑹𝑹𝒂𝒂 85.3 71.5 78.6 79.1 87.2 86.8 

𝝆𝝆 + 𝑯𝑯𝑯𝑯𝑯𝑯 93.5 88.9 91.2 90.8 95.6 95.9 

𝑹𝑹𝒂𝒂 + 𝑯𝑯𝑯𝑯𝑯𝑯 77.9 69.5 77.0 80.0 82.7 84.4 

𝝆𝝆 + 𝑹𝑹𝒂𝒂 + 𝑯𝑯𝑯𝑯𝑯𝑯 94.1 89.6 95.2 90.5 96.6 97.0 
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and 77.5%, respectively, which were higher than the accuracies of 40.4% and 29.7% when using 𝐼𝐼𝑟𝑟. The 
experimental results showed that 𝜌𝜌 was a much better feature for material recognition than 𝐼𝐼𝑟𝑟. For the 
comparisons between HSV and RGB, using HSV colours as the only features had accuracies of 88.6% 
and 77.7%, respectively. The accuracies became 88.6% and 76.3% when using RGB colours. Although 
the accuracies were very similar, HSV colours still had a better overall performance than RGB colours. 
The comparisons proved that selecting 𝜌𝜌 and HSV colours as features was preferred. 

We further compared the performances when using any two of 𝜌𝜌, 𝐻𝐻𝐻𝐻𝐻𝐻, and 𝑅𝑅𝑎𝑎 as the features (i.e. 
𝜌𝜌 + 𝑅𝑅𝑎𝑎, 𝜌𝜌 + 𝐻𝐻𝐻𝐻𝐻𝐻, and 𝑅𝑅𝑎𝑎 + 𝐻𝐻𝐻𝐻𝐻𝐻). Tables 1-2 proved that using the combination of any two features 
performed better than using any single feature on recognition accuracy. The results indicated that all the 
features were useful for improving recognition accuracy.   

Regarding the comparisons of classifiers, the experimental results showed that the ensemble 
algorithm was the best classifier. The result is consistent with the conclusion introduced in a previous 
study [26]. According to the experimental results, the algorithm with the highest recognition accuracy 
was the bootstrap-aggregated decision trees (Bagged Trees) in both Tables 1 and 2.  

4.2. Discussion 

To further understand the material recognition results, we used the confusion matrix to analyse the 
recognition performance for the case with the highest recognition accuracy (i.e. using 𝜌𝜌 + 𝑅𝑅𝑎𝑎 + 𝐻𝐻𝐻𝐻𝐻𝐻 as 
features and Bagged Trees algorithm as the classifier). The recognition results for both 2 𝑚𝑚 < 𝑅𝑅 < 4 𝑚𝑚 
and 4 𝑚𝑚 < 𝑅𝑅 < 10 𝑚𝑚 were combined, and the confusion matrix is shown in Figure 3. Each row of the 
confusion matrix shows the percentage of TP and FN for a true material class. It is found that all ten 
categories of materials produced a recognition accuracy of at least 92%. The painting material showed 
the highest TP percentage of 100%, indicating that all the data of the painting material were correctly 
recognized. The mortar material presented the lowest recognition accuracy of 92%. It is shown that 7% 
of mortar data were wrongly recognized as stone. This phenomenon indicated that the features of stone 
material were similar to these of mortar material.  

 
Figure 3. Confusion matrix of the case with the highest recognition accuracy (i.e. using 𝜌𝜌 + 𝑅𝑅𝑎𝑎 +

𝐻𝐻𝐻𝐻𝐻𝐻 as features and Bagged Trees algorithm as the classifier)  

5. CONCLUSION 

Automatic material recognition can improve the efficiency of a variety of tasks, including damage 
detection and onsite material management and tracking. Particularly, as BIM is popularly adopted in the 
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AEC industry, there is a high demand for automatic building material recognition in order to generate 
semantically rich as-is BIMs containing material information. While the previous studies are focused 
on material recognition methods based on 2D images, this study proposes to combine machine learning 
techniques into TLS for material recognition because TLS provides more types of information and has 
better robustness to lighting conditions. 

In the proposed method, material reflectance 𝜌𝜌, HSV colours, and surface roughness 𝑅𝑅𝑎𝑎 are used as 
recognition features. The 𝜌𝜌 value is an intrinsic property of a certain material, and it can be inferred 
from the TLS data. The HSV colours are used in this study instead of the RGB colours because the HSV 
colours show better robustness to varying lighting conditions. The HSV colours are calculated from 
RGB colours that are obtained from the raw laser scan data. The 𝑅𝑅𝑎𝑎 value is calculated as the average 
distance from the neighbouring points of a scan point to the fitted plane of the neighbouring points.  

To validate the proposed method, we used different supervised learning classifiers to test the different 
combinations of features. Ten different categories of materials, including concrete, mortar, stone, metal, 
painting, wood, plaster, plastic, pottery, and ceramic, are selected as test samples. A FARO FocusS70 
TLS was used to collect laser scan data of the ten different materials. The laser scan data were processed 
in MATLAB2019a to calculate the above-mentioned features. In the model training and testing, we used 
80% of the entire dataset to train the recognition model and the rest 20% to test the trained model. The 
experimental results showed that using 𝜌𝜌, HSV, and 𝑅𝑅𝑎𝑎  as features and Ensemble as the classifier 
realized an average recognition accuracy of 96.5%. Experimental results also validated that 𝜌𝜌 was a 
much better feature for material recognition than 𝐼𝐼𝑟𝑟, and HSV colour outperformed RGB colour. Further 
analyses showed that all the ten categories of materials produced a recognition accuracy of at least 92% 
when using 𝜌𝜌 + 𝑅𝑅𝑎𝑎 + 𝐻𝐻𝐻𝐻𝐻𝐻 as features and Bagged Trees algorithm as the classifier.  

REFERENCES 

 [1] J. DeGol, M. Golparvar-Fard, D. Hoiem, “Geometry-informed material recognition” , In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 
USA, pp. 1554-1562, 2016, https://doi.org/10.1109/cvpr.2016.172. 
 [2] J.E. Meroño, A.J. Perea, M.J. Aguilera, A.M. Laguna, "Recognition of materials and damage on 
historical buildings using digital image classification", South African Journal of Science, vol. 111, no. 
1-2, pp. 1-9, 2015, https://doi.org/10.17159/sajs.2015/20140001. 
 [3] K.K. Han, M. Golparvar-Fard, "Appearance-based material classification for monitoring of 
operation-level construction progress using 4D BIM and site photologs", Automation in Construction, 
vol. 53, no. 44-57, 2015, https://doi.org/10.1016/j.autcon.2015.02.007. 
 [4] Q. Wang, M. Kim, "Applications of 3D point cloud data in the construction industry: A fifteen-year 
review from 2004 to 2018", Advanced Engineering Informatics, vol. 39, no. 306-319, 2019, 
https://doi.org/10.1016/j.aei.2019.02.007. 
 [5] Q. Lu, S. Lee, "Image-based technologies for constructing as-is building information models for 
existing buildings", Journal of Computing in Civil Engineering, vol. 31, no. 4, pp. 4017005, 2017, 
https://doi.org/10.1061/(asce)cp.1943-5487.0000652. 
 [6] H. Son, C. Kim, N. Hwang, C. Kim, Y. Kang, "Classification of major construction materials in 
construction environments using ensemble classifiers", Advanced Engineering Informatics, vol. 28, no. 
1, pp. 1-10, 2014, https://doi.org/10.1016/j.aei.2013.10.001. 
 [7] Q. Lu, S. Lee, L. Chen, "Image-driven fuzzy-based system to construct as-is IFC BIM objects", 
Automation in Construction, vol. 92, no. 68-87, 2018, https://doi.org/10.1016/j.autcon.2018.03.034. 
 [8] S.Y. Chen, Y.F. Li, W. Wang, J. Zhang, “Active sensor planning for multiview vision tasks”, 
Berlin Heidelberg: Springer, pp. 25-27, 2008, https://doi.org/10.1007/978-3-540-77072-5. 
 [9] I. Brilakis, L. Soibelman, Y. Shinagawa, "Material-based construction site image retrieval", Journal 
of Computing in Civil Engineering, vol. 19, no. 4, pp. 341-355, 2005, 
https://doi.org/10.1061/(asce)0887-3801(2005)19:4(341). 
[10] I.K. Brilakis, L. Soibelman, Y. Shinagawa, "Construction site image retrieval based on material 
cluster recognition", Advanced Engineering Informatics, vol. 20, no. 4, pp. 443-452, 2006,  
[11] A. Dimitrov, M. Golparvar-Fard, "Vision-based material recognition for automated monitoring of 
construction progress and generating building information modeling from unordered site image 
collections", Advanced Engineering Informatics, vol. 28, no. 1, pp. 37-49, 2014, 
https://doi.org/10.1016/j.aei.2013.11.002. 

368



 

[12] Z. Zhu, I. Brilakis, "Parameter optimization for automated concrete detection in image data", 
Automation in Construction, vol. 19, no. 7, pp. 944-953, 2010, 
https://doi.org/10.1016/j.autcon.2010.06.008. 
[13] M. Franceschi, G. Teza, N. Preto, A. Pesci, A. Galgaro, S. Girardi, "Discrimination between marls 
and limestones using intensity data from terrestrial laser scanner", Isprs Journal of Photogrammetry and 
Remote Sensing, vol. 64, no. 6, pp. 522-528, 2009, https://doi.org/10.1016/j.isprsjprs.2009.03.003. 
[14] J. Armesto-González, B. Riveiro-Rodríguez, D. González-Aguilera, M.T. Rivas-Brea, "Terrestrial 
laser scanning intensity data applied to damage detection for historical buildings", Journal of 
Archaeological Science, vol. 37, no. 12, pp. 3037-3047, 2010, https://doi.org/10.1016/j.jas.2010.06.031. 
[15] B. Riveiro, P.B. Lourenço, D.V. Oliveira, H. González Jorge, P. Arias, "Automatic morphologic 
analysis of quasi‐periodic masonry walls from LiDAR", Computer‐Aided Civil and Infrastructure 
Engineering, vol. 31, no. 4, pp. 305-319, 2016, https://doi.org/10.1111/mice.12145. 
[16] M.U. Hassan, A. Akcamete-Gungor, C. Meral, “Investigation of Terrestrial Laser Scanning 
Reflectance Intensity and RGB Distributions to Assist Construction Material Identification ” , 
Proceedings of the Joint Conference on Computing in Construction, Heriot-Watt University, 2017, 
https://doi.org/10.24928/jc3-2017/0312. 
[17] E. Valero, F. Bosché, A. Forster, "Automatic segmentation of 3D point clouds of rubble masonry 
walls, and its application to building surveying, repair and maintenance", Automation in Construction, 
vol. 96, no. 29-39, 2018, https://doi.org/10.1016/j.autcon.2018.08.018. 
[18] K. Tan, X. Cheng, "Surface reflectance retrieval from the intensity data of a terrestrial laser 
scanner", Journal of the Optical Society of America A, vol. 33, no. 4, pp. 771-778, 2016, 
https://doi.org/10.1364/josaa.33.000771. 
[19] B. Höfle, N. Pfeifer, "Correction of laser scanning intensity data: Data and model-driven 
approaches", Isprs Journal of Photogrammetry and Remote Sensing, vol. 62, no. 6, pp. 415-433, 2007, 
https://doi.org/10.1016/j.isprsjprs.2007.05.008. 
[20] C. Suchocki, J. Katzer, "Terrestrial laser scanning harnessed for moisture detection in building 
materials–Problems and limitations", Automation in Construction, vol. 94, no. 127-134, 2018, 
https://doi.org/10.1016/j.autcon.2018.06.010. 
[21] S. Kaasalainen, A. Jaakkola, M. Kaasalainen, A. Krooks, A. Kukko, "Analysis of incidence angle 
and distance effects on terrestrial laser scanner intensity: Search for correction methods", Remote 
Sensing, vol. 3, no. 10, pp. 2207-2221, 2011, https://doi.org/10.3390/rs3102207. 
[22] W. Fang, X. Huang, F. Zhang, D. Li, "Intensity correction of terrestrial laser scanning data by 
estimating laser transmission function", Ieee Transactions On Geoscience and Remote Sensing, vol. 53, 
no. 2, pp. 942-951, 2015, https://doi.org/10.1109/tgrs.2014.2330852. 
[23] A. Krooks, S. Kaasalainen, T. Hakala, O. Nevalainen, "Correction of intensity incidence angle 
effect in terrestrial laser scanning", ISPRS Annals of Photogrammetry, Remote Sensing and Spatial 
Information Sciences, vol. 2, no. 145-150, 2013, https://doi.org/10.5194/isprsannals-ii-5-w2-145-2013. 
[24] S. Kaasalainen, A. Krooks, A. Kukko, H. Kaartinen, "Radiometric calibration of terrestrial laser 
scanners with external reference targets", Remote Sensing, vol. 1, no. 3, pp. 144-158, 2009, 
https://doi.org/10.3390/rs1030144. 
[25] S. Kaasalainen, A. Kukko, T. Lindroos, P. Litkey, H. Kaartinen, J. Hyyppa, E. Ahokas, "Brightness 
measurements and calibration with airborne and terrestrial laser scanners", Ieee Transactions On 
Geoscience and Remote Sensing, vol. 46, no. 2, pp. 528-534, 2008, 
https://doi.org/10.1109/tgrs.2007.911366. 
[26] H. Son, C. Kim, N. Hwang, C. Kim, Y. Kang, "Classification of major construction materials in 
construction environments using ensemble classifiers", Advanced Engineering Informatics, vol. 28, no. 
1, pp. 1-10, 2014, https://doi.org/10.1016/j.aei.2013.10.001. 
[27] A.R. Smith, "Color gamut transform pairs", ACM Siggraph Computer Graphics, vol. 12, no. 3, pp. 
12-19, 1978, https://doi.org/10.1145/800248.807361. 
[28] N. Fardin, Q. Feng, O. Stephansson, "Application of a new in situ 3D laser scanner to study the 
scale effect on the rock joint surface roughness", International Journal of Rock Mechanics and Mining 
Sciences, vol. 2, no. 41, pp. 329-335, 2004, https://doi.org/10.1016/s1365-1609(03)00111-4. 
[29] R.M. Pollyea, J.P. Fairley, "Estimating surface roughness of terrestrial laser scan data using 
orthogonal distance regression", Geology, vol. 39, no. 7, pp. 623-626, 2011, 
https://doi.org/10.1130/g32078.1. 

369



 

[30] FARO, “FARO® LASER SCANNER FOCUS”, Available from: <https://www.faro.com/en-
sg/products/construction-bim/faro-laser-scanner-focus/>, Retrieved June 18, 2019. 
[31] MathWorks, “ MATLAB R2019a ” , Available from: 
<https://www.mathworks.com/products/new_products/latest_features.html?s_tid=hp_release_2019a>, 
Retrieved June 18, 2019. 
[32] FARO, “FARO SCENE”, Available from: <https://www.faro.com/en-gb/products/construction-
bim-cim/faro-scene/software/>, Retrieved June 18, 2019. 
 
 

370


