• Title/Summary/Keyword: Law of Large numbers

Search Result 158, Processing Time 0.027 seconds

An Analysis on Abduction Type in the Activities Exploring 'Law of Large Numbers' ('큰 수의 법칙' 탐구 활동에서 나타난 가추법의 유형 분석)

  • Lee, Yoon-Kyung;Cho, Cheong-Soo
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.3
    • /
    • pp.323-345
    • /
    • 2015
  • This study examined the types of abduction appeared in the exploration activities of 'law of large numbers' in order to figure out relation between statistical reasoning and abduction. When the classroom discourse of students was analyzed by Peirce's abduction, Eco's abduction type and Toulmin's argument pattern, students used overcoded abduction the most in the discourse of abduction. However, there composed a low percent of undercoded abduction leading to various thinking, and creative abduction used to make new principles or theories. By the CAS calculators used in the process of reasoning, students were provided with empirical context to understand the concept of abstract probability, through which they actively participated in the argumentation centered on the reasoning. As a result, it was found that not only to understand the abduction, but to build statistical context with tools in the learning of statistical reasoning is important.

ON THE WEAK LAW FOR WEIGHTED SUMS INDEXED BY RANDOM VARIABLES UNDER NEGATIVELY ASSOCIATED ARRAYS

  • Baek, Jong-Il;Lee, Dong-Myong
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.117-126
    • /
    • 2003
  • Let {$X_{nk}$\mid$1\;{\leq}\;k\;{\leq}\;n,\;n\;{\geq}\;1$} be an array of row negatively associated (NA) random variables which satisfy $P($\mid$X_{nk}$\mid$\;>\;x)\;{\leq}\;P($\mid$X$\mid$\;>\;x)$. For weighed sums ${{\Sigma}_{k=1}}^{Tn}\;a_kX_{nk}$ indexed by random variables {$T_n$\mid$n\;{\geq}$1$}, we establish a general weak law of large numbers (WLLN) of the form $({{\Sigma}_{k=1}}^{Tn}\;a_kX_{nk}\;-\;v_{[nk]})\;/b_{[an]}$ under some suitable conditions, where $\{a_n$\mid$n\;\geq\;1\},\; \{b_n$\mid$n\;\geq\;1\}$ are sequences of constants with $a_n\;>\;0,\;0\;<\;b_n\;\rightarrow \;\infty,\;n\;{\geq}\;1$, and {$v_{an}$\mid$n\;{\geq}\;1$} is an array of random variables, and the symbol [x] denotes the greatest integer in x.

ON LIMIT BEHAVIOURS FOR FELLER'S UNFAIR-FAIR-GAME AND ITS RELATED MODEL

  • An, Jun
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1185-1201
    • /
    • 2022
  • Feller introduced an unfair-fair-game in his famous book [3]. In this game, at each trial, player will win 2k yuan with probability pk = 1/2kk(k + 1), k ∈ ℕ, and zero yuan with probability p0 = 1 - Σk=1 pk. Because the expected gain is 1, player must pay one yuan as the entrance fee for each trial. Although this game seemed "fair", Feller [2] proved that when the total trial number n is large enough, player will loss n yuan with its probability approximate 1. So it's an "unfair" game. In this paper, we study in depth its convergence in probability, almost sure convergence and convergence in distribution. Furthermore, we try to take 2k = m to reduce the values of random variables and their corresponding probabilities at the same time, thus a new probability model is introduced, which is called as the related model of Feller's unfair-fair-game. We find out that this new model follows a long-tailed distribution. We obtain its weak law of large numbers, strong law of large numbers and central limit theorem. These results show that their probability limit behaviours of these two models are quite different.

CONVERGENCE OF DOUBLE SERIES OF RANDOM ELEMENTS IN BANACH SPACES

  • Tien, Nguyen Duy;Dung, Le Van
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1053-1064
    • /
    • 2012
  • For a double array of random elements $\{X_{mn};m{\geq}1,n{\geq}1\}$ in a $p$-uniformly smooth Banach space, $\{b_{mn};m{\geq}1,n{\geq}1\}$ is an array of positive numbers, convergence of double random series ${\sum}^{\infty}_{m=1}{\sum}^{\infty}_{n=1}X_{mn}$, ${\sum}^{\infty}_{m=1}{\sum}^{\infty}_{n=1}b^{-1}_{mn}X_{mn}$ and strong law of large numbers $$b^{-1}_{mn}\sum^m_{i=1}\sum^n_{j=1}X_{ij}{\rightarrow}0$$ as $$m{\wedge}n{\rightarrow}{\infty}$$ are established.

Benford's Law in Linguistic Texts: Its Principle and Applications (언어 텍스트에 나타나는 벤포드 법칙: 원리와 응용)

  • Hong, Jung-Ha
    • Language and Information
    • /
    • v.14 no.1
    • /
    • pp.145-163
    • /
    • 2010
  • This paper aims to propose that Benford's Law, non-uniform distribution of the leading digits in lists of numbers from many real-life sources, also appears in linguistic texts. The first digits in the frequency lists of morphemes from Sejong Morphologically Analyzed Corpora represent non-uniform distribution following Benford's Law, but showing complexity of numerical sources from complex systems like earthquakes. Benford's Law in texts is a principle reflecting regular distribution of low-frequency linguistic types, called LNRE(large number of rare events), and governing texts, corpora, or sample texts relatively independent of text sizes and the number of types. Although texts share a similar distribution pattern by Benford's Law, we can investigate non-uniform distribution slightly varied from text to text that provides useful applications to evaluate randomness of texts distribution focused on low-frequency types.

  • PDF

Superior and Inferior Limits on the Increments of Gaussian Processes

  • Park, Yong-Kab;Hwang, Kyo-Shin;Park, Soon-Kyu
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.1
    • /
    • pp.57-74
    • /
    • 1997
  • Csorgo-Revesz type theorems for Wiener process are developed to those for Gaussian process. In particular, some results of superior and inferior limits for the increments of a Gaussian process are differently obtained under mild conditions, via estimating probability inequalities on the suprema of a Gaussian process.

  • PDF

EXTENSIONS OF SEVERAL CLASSICAL RESULTS FOR INDEPENDENT AND IDENTICALLY DISTRIBUTED RANDOM VARIABLES TO CONDITIONAL CASES

  • Yuan, De-Mei;Li, Shun-Jing
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.431-445
    • /
    • 2015
  • Extensions of the Kolmogorov convergence criterion and the Marcinkiewicz-Zygmund inequalities from independent random variables to conditional independent ones are derived. As their applications, a conditional version of the Marcinkiewicz-Zygmund strong law of large numbers and a result on convergence in $L^p$ for conditionally independent and conditionally identically distributed random variables are established, respectively.

On the Weak Law of Large Numbers for the Sums of Sign-Invariant Random Variables (대칭확률변수(對稱確率變數)의 대수(對數)의 법칙(法則)에 대하여)

  • Hong, Dug-Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.4
    • /
    • pp.53-63
    • /
    • 1993
  • We consider various types of weak convergence for sums of sign-invariant random variables. Some results show a similarity between independence and sign-invariance. As a special case, we obtain a result which strengthens a weak law proved by Rosalsky and Teicher [6] in that some assumptions are deleted.

  • PDF

A convergence of fuzzy random variables

  • Hong, Dug-Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.75-82
    • /
    • 2003
  • In this paper, a general convergence theorem of fuzzy random variables is considered. Using this result, we can easily prove the recent result of Joo et al. (2001) and generalize the recent result of Kim(2000).

  • PDF