DOI QR코드

DOI QR Code

A STRONG LIMIT THEOREM FOR SEQUENCES OF BLOCKWISE AND PAIRWISE m-DEPENDENT RANDOM VARIABLES

  • Received : 2009.07.21
  • Published : 2011.03.31

Abstract

In this paper, we establish a Marcinkiewicz-Zygmund type strong law for sequences of blockwise and pairwise m-dependent random variables. The sharpness of the results is illustrated by an example.

Keywords

References

  1. A. Adler, A. Rosalsky, and R. L. Taylor, Some strong laws of large numbers for sums of random elements, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 4, 335-357.
  2. A. Bose and T. K. Chandra, Cesaro uniform integrability and $L_p$ convergence, Sankhya Ser. A 55 (1993), 12-28.
  3. T. K. Chandra and A. Goswami, Cesaro uniform integrability and the strong law of large numbers, Sankhya Ser. A 54 (1992), 215-231.
  4. B. D. Choi and S. H. Sung, On convergence of ($S_n-ES_n)/n^{1/r}$, 1 < r < 2, for pairwise independent random variables, Bull. Korean Math. Soc. 22 (1985), no. 2, 79-82.
  5. S. Csorgo, K. Tandori, and V. Totik, On the strong law of large numbers for pairwise independent random variables, Acta Math. Hungar. 42 (1983), no. 3-4, 319-330. https://doi.org/10.1007/BF01956779
  6. E. B. Czerebak-Mrozowicz, O. I. Klesov, and Z. Rychlik, Marcinkiewicz-type strong law of large numbers for pairwise independent random fields, Probab. Math. Statist. 22 (2002), no. 1, Acta Univ. Wratislav. No. 2409, 127-139.
  7. N, Etemadi, An elementary proof of the strong law of large numbers, Z. Wahrsch. Verw. Gebiete 55 (1981), no. 1, 119-122. https://doi.org/10.1007/BF01013465
  8. I. Fazekas and T. Tomacs, Strong laws of large numbers for pairwise independent random variables with multidimensional indices, Publ. Math. Debrecen 53 (1998), no. 1-2, 149-161.
  9. V. F. Gaposhkin, On the strong law of large numbers for blockwise independent and blockwise orthogonal random variables, Theory Probab. Appl. 39 (1995), 667-684.
  10. S. Geisser and N. Mantel, Pairwise independence of jointly dependent variables, Ann. Math. Statist. 33 (1962), 290-291. https://doi.org/10.1214/aoms/1177704732
  11. M. Harber, Testing for pairwise independence, Biometrics, 42 (1986), 429-435. https://doi.org/10.2307/2531063
  12. D. H. Hong and S. Y. Hwang, Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variables, Int. J. Math. Math. Sci. 22 (1999), no. 1, 171-177. https://doi.org/10.1155/S0161171299221710
  13. T. C. Hu, On pairwise independent and independent exchangeable random variables, Stochastic Anal. Appl. 15 (1997), no. 1, 51-57. https://doi.org/10.1080/07362999708809463
  14. V. M. Kruglov, Growth of sums of pairwise independent random variables with infinite means, Theory Probab. Appl. 51 (2007), no. 2, 359-362. https://doi.org/10.1137/S0040585X97982426
  15. V. M. Kruglov, A strong law of large numbers for pairwise independent identically distributed random variables with infinite means, Statist. Probab. Lett. 78 (2008), no. 7, 890-895. https://doi.org/10.1016/j.spl.2007.09.016
  16. D. Li, A. Rosalsky, and A. Volodin, On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables, Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), no. 2, 281-305.
  17. D. Li and X. C. Wang, Strong limit theorems for blockwise mdependent random variables and a generalization of the conjectures of Moricz, Chinese Ann. Math. Ser. B 12 (1991), no. 2, 192-201.
  18. A. Martikainen, On the strong law of large numbers for sums of pairwise independent random variables. Statist, Probab. Lett. 25 (1995), no. 1, 21-26. https://doi.org/10.1016/0167-7152(94)00201-I
  19. F. Moricz, SLLN and convergence rates for nearly orthogonal sequences of random variables, Proc. Amer. Math. Soc. 95 (1985), no. 2, 287-294.
  20. F. Moricz, Strong limit theorems for blockwise m-dependent and blockwise quasi-orthogonal sequences of random variables, Proc. Amer. Math. Soc. 101 (1987), no. 4, 709-715.
  21. G. L. O'Brien, Pairwise independent random variables, Ann. Probab. 8 (1980), no. 1,170-175. https://doi.org/10.1214/aop/1176994834
  22. A. Rosalsky, Strong stability of normed weighted sums of pairwise i.i.d. random variables, Bull. Inst. Math. Acad. Sinica 15 (1987), no. 2, 203-219.
  23. A. Rosalsky and L. V. Thanh, On the strong law of large numbers for sequences of blockwise independent and blockwise p-orthogonal random elements in Rademacher type p Banach spaces, Probab. Math. Statist. 27 (2007), no. 2, 205-222.
  24. S. H. Sung, S. Lisawadi, and A. Volodin, Weak laws of large numbers for arrays under a condition of uniform integrability, J. Korean Math. Soc. 45 (2008), no. 1, 289-300. https://doi.org/10.4134/JKMS.2008.45.1.289
  25. L. V. Thanh, Strong laws of large numbers for sequences of blockwise and pairwise m-dependent random variables, Bull. Inst. Math. Acad. Sinica 33 (2005), no. 4, 397-405.
  26. L. V. Thanh, On the Brunk-Chung type strong law of large numbers for sequences of blockwise m-dependent random variables, ESAIM Probab. Stat. 10 (2006), 258-268. https://doi.org/10.1051/ps:2006010
  27. D. Wei and R. L. Taylor, Convergence of weighted sums of tight random elements, J. Multivariate Anal. 8 (1978), no. 2, 282-294. https://doi.org/10.1016/0047-259X(78)90080-5
  28. A. Wigderson, The amazing power of paiwise independence, Proceedings of the twentysixth annual ACM symposium on Theory of Computing, Stoc. (1994), 645-647, Montreal, Canada.