References
- A. Adler, A. Rosalsky, and R. L. Taylor, Some strong laws of large numbers for sums of random elements, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 4, 335-357.
-
A. Bose and T. K. Chandra, Cesaro uniform integrability and
$L_p$ convergence, Sankhya Ser. A 55 (1993), 12-28. - T. K. Chandra and A. Goswami, Cesaro uniform integrability and the strong law of large numbers, Sankhya Ser. A 54 (1992), 215-231.
-
B. D. Choi and S. H. Sung, On convergence of (
$S_n-ES_n)/n^{1/r}$ , 1 < r < 2, for pairwise independent random variables, Bull. Korean Math. Soc. 22 (1985), no. 2, 79-82. - S. Csorgo, K. Tandori, and V. Totik, On the strong law of large numbers for pairwise independent random variables, Acta Math. Hungar. 42 (1983), no. 3-4, 319-330. https://doi.org/10.1007/BF01956779
- E. B. Czerebak-Mrozowicz, O. I. Klesov, and Z. Rychlik, Marcinkiewicz-type strong law of large numbers for pairwise independent random fields, Probab. Math. Statist. 22 (2002), no. 1, Acta Univ. Wratislav. No. 2409, 127-139.
- N, Etemadi, An elementary proof of the strong law of large numbers, Z. Wahrsch. Verw. Gebiete 55 (1981), no. 1, 119-122. https://doi.org/10.1007/BF01013465
- I. Fazekas and T. Tomacs, Strong laws of large numbers for pairwise independent random variables with multidimensional indices, Publ. Math. Debrecen 53 (1998), no. 1-2, 149-161.
- V. F. Gaposhkin, On the strong law of large numbers for blockwise independent and blockwise orthogonal random variables, Theory Probab. Appl. 39 (1995), 667-684.
- S. Geisser and N. Mantel, Pairwise independence of jointly dependent variables, Ann. Math. Statist. 33 (1962), 290-291. https://doi.org/10.1214/aoms/1177704732
- M. Harber, Testing for pairwise independence, Biometrics, 42 (1986), 429-435. https://doi.org/10.2307/2531063
- D. H. Hong and S. Y. Hwang, Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variables, Int. J. Math. Math. Sci. 22 (1999), no. 1, 171-177. https://doi.org/10.1155/S0161171299221710
- T. C. Hu, On pairwise independent and independent exchangeable random variables, Stochastic Anal. Appl. 15 (1997), no. 1, 51-57. https://doi.org/10.1080/07362999708809463
- V. M. Kruglov, Growth of sums of pairwise independent random variables with infinite means, Theory Probab. Appl. 51 (2007), no. 2, 359-362. https://doi.org/10.1137/S0040585X97982426
- V. M. Kruglov, A strong law of large numbers for pairwise independent identically distributed random variables with infinite means, Statist. Probab. Lett. 78 (2008), no. 7, 890-895. https://doi.org/10.1016/j.spl.2007.09.016
- D. Li, A. Rosalsky, and A. Volodin, On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables, Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), no. 2, 281-305.
- D. Li and X. C. Wang, Strong limit theorems for blockwise mdependent random variables and a generalization of the conjectures of Moricz, Chinese Ann. Math. Ser. B 12 (1991), no. 2, 192-201.
- A. Martikainen, On the strong law of large numbers for sums of pairwise independent random variables. Statist, Probab. Lett. 25 (1995), no. 1, 21-26. https://doi.org/10.1016/0167-7152(94)00201-I
- F. Moricz, SLLN and convergence rates for nearly orthogonal sequences of random variables, Proc. Amer. Math. Soc. 95 (1985), no. 2, 287-294.
- F. Moricz, Strong limit theorems for blockwise m-dependent and blockwise quasi-orthogonal sequences of random variables, Proc. Amer. Math. Soc. 101 (1987), no. 4, 709-715.
- G. L. O'Brien, Pairwise independent random variables, Ann. Probab. 8 (1980), no. 1,170-175. https://doi.org/10.1214/aop/1176994834
- A. Rosalsky, Strong stability of normed weighted sums of pairwise i.i.d. random variables, Bull. Inst. Math. Acad. Sinica 15 (1987), no. 2, 203-219.
- A. Rosalsky and L. V. Thanh, On the strong law of large numbers for sequences of blockwise independent and blockwise p-orthogonal random elements in Rademacher type p Banach spaces, Probab. Math. Statist. 27 (2007), no. 2, 205-222.
- S. H. Sung, S. Lisawadi, and A. Volodin, Weak laws of large numbers for arrays under a condition of uniform integrability, J. Korean Math. Soc. 45 (2008), no. 1, 289-300. https://doi.org/10.4134/JKMS.2008.45.1.289
- L. V. Thanh, Strong laws of large numbers for sequences of blockwise and pairwise m-dependent random variables, Bull. Inst. Math. Acad. Sinica 33 (2005), no. 4, 397-405.
- L. V. Thanh, On the Brunk-Chung type strong law of large numbers for sequences of blockwise m-dependent random variables, ESAIM Probab. Stat. 10 (2006), 258-268. https://doi.org/10.1051/ps:2006010
- D. Wei and R. L. Taylor, Convergence of weighted sums of tight random elements, J. Multivariate Anal. 8 (1978), no. 2, 282-294. https://doi.org/10.1016/0047-259X(78)90080-5
- A. Wigderson, The amazing power of paiwise independence, Proceedings of the twentysixth annual ACM symposium on Theory of Computing, Stoc. (1994), 645-647, Montreal, Canada.