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ON LIMIT BEHAVIOURS FOR FELLER’S

UNFAIR-FAIR-GAME AND ITS RELATED MODEL

Jun An

Abstract. Feller introduced an unfair-fair-game in his famous book [3].
In this game, at each trial, player will win 2k yuan with probability pk =

1/2kk(k + 1), k ∈ N, and zero yuan with probability p0 = 1−
∑∞

k=1 pk.

Because the expected gain is 1, player must pay one yuan as the entrance
fee for each trial. Although this game seemed “fair”, Feller [2] proved

that when the total trial number n is large enough, player will loss n

yuan with its probability approximate 1. So it’s an “unfair” game. In
this paper, we study in depth its convergence in probability, almost sure

convergence and convergence in distribution. Furthermore, we try to take

2k = m to reduce the values of random variables and their corresponding
probabilities at the same time, thus a new probability model is introduced,

which is called as the related model of Feller’s unfair-fair-game. We find
out that this new model follows a long-tailed distribution. We obtain its

weak law of large numbers, strong law of large numbers and central limit

theorem. These results show that their probability limit behaviours of
these two models are quite different.

1. Introduction

In recent years, many scholars studied the limit behaviours for random vari-
able sequences with their expectations or variances not existed. They applied
these conclusions to study some special random variables, such as Pareto-Zipf
distribution ([1]), Feller game ([1, 9–11]), St. Petersburgur game ([6, 10]), etc.,
and obtained a lot of interesting and meaningful outcomes.

Feller introduced an unfair-fair-game in his famous book [3]. In this game,
at each trial, player will win 2k yuan with probability pk and zero yuan with
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probability p0, where

(1.1) pk = P
{
X1 = 2k

}
=

1

2kk(k + 1)
, k ∈ N, p0 = P {X1 = 0} = 1−

∞∑
k=1

pk.

Because the expected gain is 1, the player must pay one yuan as the entrance
fee for each trial. Although this game seemed “fair”, Feller [2] proved that
when the total trial number n is large enough, player will loss n yuan with its
probability approximate 1. Let Xi represent the player’s gain at the ith trial,
Sn =

∑n
i=1Xi denote the total gain in its n trials, this result can be expressed

as the following theorem (see [3]).

Theorem 1.1. Let X1, X2, . . . be independent random variables with the same
distribution described in (1.1). Then for any ε > 0,

(1.2) lim
n→∞

P

{
Sn − n < −

(1− ε)n
Log2n

}
= 1,

where Log2n = max{1, log2 n}, and log2 n denotes the logarithm to the base 2.

Theorem 1.1 shows that this game is unfavorable for players. So it’s an
“unfair” game. We call it as Feller’s unfair-fair-game. For this model, the
expectation EX1 = 1. But, for any α > 1, the moment EXα

1 doesn’t exist.
Therefore, many classical limit theorems don’t hold, which arouses our inter-
est in this subject. Unfortunately, its further limit behaviours have not be
investigated in literatures. In this paper, some probability limit properties for
this model are studied. Concretely peaking, in Section 2, Theorem 2.1 studies
the convergence in probability and its rate of convergence for {Sn}. Theorem
2.2 investigates the convergence in probability and almost sure convergence for
{Xn}. Theorem 2.3 obtains the characteristic function of the limit distribution
of {Sn}, which is similar to Theorem 1 of [8].

As we known, the probability limit properties of random sequences are often
closely related to their moment conditions. For the model of Feller’s unfair-
fair-game, the expectation EX1 = 1, and for any α > 1, the moment EXα

1 does
not exist as stated above. Now if we reduce the values of random variables and
their corresponding probabilities at the same time, does the new probability
model have the same limit properties? Driven by this motivation, we try to
take 2k = m, equivalently, k = [log2m], where [a] denotes the largest integer
no more than the real number a. For any integer m > 2, we define

pm = P {X1 = m} =
1

mlog2m (log2m+ 1)
, m > 2.

Based on this idea, we introduce the following probability model.
Let X1, X2, . . . be independent random variables with the same distribution

(1.3) pk = P {X1 = k} =
1

ck(Logak)2
, k > 1, c =

∞∑
k=1

1

k(Logak)2
, a > 1,
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where Logan = max{1, loga n}. We take the denominator of pk as ck(Logak)2

instead of ck(Logak)(Logak+1), for the sake of the convenience of mathematical
processing, however, they are not much different. We call the new model of
(1.3) as the related model of Feller’s unfair-fair-game, abbreviated as related
model of FUFG.

For the related model of FUFG of (1.3), it’s easy to get

F (x) = P{X1 > x} ∼ ln a

cLogax
as x→ +∞,

where ln a = loge a. For any t > 0, F (x + t) ∼ F (x) as x → +∞. Now X1

follows a long-tailed distribution (see [4]), which is widely used in many fields,
such as machine learning, artificial intelligence, finance theory, insurance theory
and so on. Therefore it is meaningful to study in depth the probability limit
properties of this model.

Since EX1 = +∞, the conditions of classical limit theorem are not satisfied,
it’s necessary to specially discuss its limit behaviours. In Section 3, Theorem
3.3, Theorem 3.4 and Theorem 3.6 study the convergence in probability and
almost sure convergence for its partial sums Sn =

∑n
i=1Xi. Theorem 3.7

obtains its central limit theorem. Our findings show that these two models
have completely different probability limit behaviours.

Throughout this paper, Xn = oP (Yn) denotes Xn/Yn → 0 in probability;
a.s. is the abbreviation of “almost surely”; i.o. is the abbreviation of “infinitely
offen”; C represents a positive constant and its value may be different and

unimportant on different occasions;
d−→ means convergence in distribution; an =

o(bn) represents an/bn → 0 as n → ∞; an ∼ bn means limn→∞ an/bn = 1;
an = O(bn) stands for −∞ < lim infn→∞ an/bn 6 lim supn→∞ an/bn <∞.

2. Limit behaviours for Feller’s unfair-fair-game

Let X1, X2, . . . be independent random variables with the same distribution
described in (1.1). Define bn = n/Log2n, m(n) = sup{m ∈ N : 2m 6 bn},
an = m(n)/(m(n) + 1). From

2m(n) 6 n/Log2n < 2m(n)+1,

we can get

m(n) 6 Log2n− Log2Log2n < m(n) + 1.

Thus

1− Log2Log2n+ 1

Log2n
<

m(n)

Log2n
6 1− Log2Log2n

Log2n
,

and

(2.1) lim
n→∞

m(n)

Log2n
= 1, lim

n→∞
an = 1.

We first study the convergence in probability and its rate of convergence for
the partial sums Sn and obtain the following result.
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Theorem 2.1. Let X1, X2, . . . be independent random variables with the same
distribution described in (1.1), Sn =

∑n
i=1Xi. Then

(2.2)
Sn − nan

bn
→ 0 in probability,

and

(2.3)
Sn − nan

bn
= oP (Log2n) .

Proof. Define X̃i = XiI (Xi 6 bn). For n large enough, m(n) > Log2n/2,
2m(n) > bn/2, so

EX̃1 =

m(n)∑
k=1

1

k(k + 1)
= 1− 1

m(n) + 1
=

m(n)

m(n) + 1
= an,

nP {X1 > bn} = n

∞∑
k=m(n)+1

1

2kk(k + 1)

6
n

m(n)2

∞∑
k=m(n)+1

1

2k

=
n

m(n)22m(n)

6
4n

(Log2n)2
· 2Log2n

n

=
C

Log2n
→ 0 as n→∞,

EX̃2
1 =

m(n)∑
k=1

2k

k(k + 1)
(2.4)

=

[m(n)/2]∑
k=1

2k

k(k + 1)
+

m(n)∑
k=[m(n)/2]+1

2k

k(k + 1)

:= I1 + I2.

We start to estimate the order of I1 and I2, respectively. Firstly,

(2.5) I1 6 m(n)2m(n)/2 6 2Log2n ·
√

n

Log2n
= 2
√
nLog2n = o

(
n

(Log2n)2

)
.

Secondly,

I2 6
4

m(n)2

m(n)∑
k=[m(n)/2]+1

2k(2.6)



ON LIMIT BEHAVIOURS FOR FELLER’S UNFAIR-FAIR-GAME ... 1189

6
4

m(n)2
· 2m(n)+1

6
16

(Log2n)2
· 2n

Log2n

= o

(
n

(Log2n)2

)
.

Combining (2.5), (2.6) and (2.4), we get that

1

b2n

n∑
i=1

VarX̃i 6
1

b2n

n∑
i=1

EX̃2
i(2.7)

= n

(
Log2n

n

)2

· o
(

n

(Log2n)2

)
→ 0 as n→∞.

Applying Theorem 6.3.3 of [5] with (2.4) and (2.7), it yields (2.2).
Because EX1 = 1, by the Khintchine’s weak law of large numbers we get

Sn − n
n

→ 0 in probability.

Consequently,

Sn − nan
bn

=
Sn − n
n

· n
bn

+
n(1− an)

bn

=
Sn − n
n

· Log2n+ (1− an)Log2n

=

{
Sn − n
n

+ (1− an)

}
Log2n

= oP (Log2n).

Thus (2.3) holds. The proof of Theorem 2.1 is completed. �

Using Theorem 2.1, we can prove Theorem 1.1 easily.

Proof of Theorem 1.1. For any ε ∈ (0, 1), taking ε′ ∈ (0, 1) such that 0 <
1− ε+ ε′ = 1/α < 1 for this α > 1 and n large enough, the first part of (2.1)
implies m(n) + 1 6 αLog2n . Now

P

{
Sn − n < −

(1− ε)n
Log2n

}
= P

{
Sn − n < −

n

αLog2n
+

nε′

Log2n

}
> P

{
Sn − n < −

n

m(n) + 1
+

nε′

Log2n

}
= P {Sn − nan < ε′bn}

> P

{∣∣∣Sn − nan
bn

∣∣∣ < ε′
}
→ 1 as n→∞.

So (1.2) holds. �
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Next we study the convergence in probability and almost sure convergence
for {Xn}.

Theorem 2.2. Let X1, X2, . . . be independent random variables with the same
distribution described in (1.1). Then, we have the following limit behaviour

(2.8)
Xn − an

bn
→ 0 in probability,

and

(2.9) lim inf
n→∞

Xn − an
bn

= 0 a.s., lim sup
n→∞

Xn − an
bn

= +∞ a.s..

Proof. For any ε > 0 and n large enough, an − εn/Log2n < 0 and

P {X1 < an − εn/Log2n} = 0,

since an > 0, an ↑ 1 as n→∞, X1 > 0 a.s.. Thus,

(2.10) P

{
Xn − an

bn
< −ε

}
= P {X1 < an − εn/Log2n} = 0.

On the other hand, for any ε > 0 and n large enough,

(2.11) P

{
Xn − an

bn
> ε

}
= P {X1 > an + εn/Log2n} → 0 as n→∞.

Consequently, (2.10) and (2.11) lead to (2.8).
Based on the same reason of (2.10) we know that

∞∑
n=1

P

{
Xn − an

bn
< −ε

}
=

∞∑
n=1

P {X1 < an − εn/Log2n} <∞.

Using the first Borel-Cantlli lemma we can also obtain

P

{
Xn − an

bn
< −ε, i.o.

}
= 0,

which yields

(2.12) lim inf
n→∞

Xn − an
bn

> 0 a.s..

For any ε > 0, {X1 = 0} ⊂ {X1 < an + εbn}, thus
∞∑
n=1

P

{
Xn − an

bn
< ε

}
=

∞∑
n=1

P {X1 < an + εbn} >
∞∑
n=1

P {X1 = 0} = +∞.

By the second Borel-Cantelli lemma we obtain

P

{
Xn − an

bn
< ε i.o.

}
= 1,

which leads to

(2.13) lim inf
n→∞

Xn − an
bn

6 0 a.s..
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Combining (2.12) and (2.13), the first part of (2.9) is proved.
For any M > 0, put k(n) = inf{k : 2k > (M + 1)bn}. Similar to (2.1) we

can easily get k(n) ∼ Log2n as n → ∞. From the knowledge of mathematical
analysis,∫ k+1

k

1

2xx(x+ 1)
dx 6

1

2kk(k + 1)
6
∫ k

k−1

1

2xx(x+ 1)
dx, k = 1, 2, . . . .

This leads to

(2.14)

∫ ∞
k(n)

1

2xx(x+ 1)
dx 6

∞∑
k=k(n)

1

2kk(k + 1)
6
∫ ∞
k(n)−1

1

2xx(x+ 1)
dx.

Using the law of L’Hospital, it’s easy to verify that

(2.15)

∫ ∞
u

1

2xx(x+ 1)
dx ∼ 1

2uu(u+ 1) ln 2
as u→∞.

Combining (2.14) and (2.15), we can obtain that
∞∑

k=k(n)

1

2kk(k + 1)
= O

(
1

2k(n)k(n)(k(n) + 1)

)
as n→∞.

Consequently,
∞∑
n=1

P

{
Xn − an

bn
> M

}
=

∞∑
n=1

P {X1 > an +Mbn}

>
∞∑
n=1

P {X1 > (M + 1)bn} (since an → 1)

=

∞∑
n=1

∞∑
k=k(n)

1

2kk(k + 1)

> C
∞∑
n=1

1

2k(n)k(n)(k(n) + 1)

> C
∞∑
n=1

1

n/Log2n · (Log2n)2

= C

∞∑
n=1

1

nLog2n
= +∞.

By the second Borel-Cantelli lemma we have

P

{
Xn − an

bn
> M, i.o.

}
= 1,

which yields

lim sup
n→∞

Xn − an
bn

= +∞ a.s..
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Thus the second part of (2.9) holds. The proof of Theorem 2.2 is completed. �

LetB2
n = n

{∑m(n)
k=1 2k/k(k + 1)− a2n

}
, X̃i = XiI(Xi 6 bn), S̃n =

∑n
k=1 X̃i.

It’s easy to get

P
{
S̃n 6= Sn

}
→ 0 as n→∞.

Applying the Lindeberg-Lévy-Feller central limit theorem, we can prove that

S̃n − nan
B2
n

d−→ N(0, 1)

does not hold, where N(0, 1) denotes the standard normal random variable.
Consequently

Sn − nan
B2
n

d−→ N(0, 1)

does not hold.
In order to study the limit distribution for the partial sums, Sn, inspired by

Anderson [8], the following theorem obtains its characteristic function of the
limit distribution of Sn.

Theorem 2.3. Let X1, X2, . . . be independent random variables with the same
distribution described in (1.1), Nn = 2n, Mn = n22n. Then

SMn −Mn

Nn
=
SMn

Nn
− n2 d−→ S,

where the characteristic function of random variable S is exp{g(t)}, and

g(t) =

0∑
k=−∞

eit2
k − 1− it2k

2k
+

∞∑
k=1

eit2
k − 1

2k
.

Proof. We use the method of the proof of Theorem 1 in Anderson [8] to prove
this theorem.

The characteristic function of X1 is

f(t) = E exp{itX1} = p0 +

∞∑
k=1

exp{it2k}
2kk(k + 1)

= 1 +

∞∑
k=1

exp{it2k} − 1

2kk(k + 1)
.

Hence the characteristic function of SMn
/Nn − n2 is

fNn(t) = E exp

{
it

(
SMn

Nn
− n2

)}
(2.16)

= E exp

{
itSMn

Nn

}
exp{−itn2}

=

{
f

(
t

Nn

)}Mn

exp{−itn2}.
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Next, we will decompose f(t/Nn)− 1 into two parts.

f

(
t

Nn

)
− 1(2.17)

=

∞∑
k=1

exp{it2k−n} − 1

2kk(k + 1)

=

∞∑
k=−n+1

exp{it2k} − 1

2k+n(k + n)(k + n+ 1)

=
1

Nn

{
0∑

k=−n+1

exp{it2k} − 1

2k(k + n)(k + n+ 1)
+

∞∑
k=1

exp{it2k} − 1

2k(k + n)(k + n+ 1)

}

=
1

Nn

(
I(1)n + I(2)n

)
.

Since∣∣∣∣∣n2
∞∑
k=1

exp{it2k} − 1

2k(k + n)(k + n+ 1)

∣∣∣∣∣ 6
∞∑
k=1

∣∣exp{it2k} − 1
∣∣

2k(1 + k
n )(1 + k+1

n )
6
∞∑
k=1

1

2k−1
<∞,

applying the Lesbegue’s controlled convergent theorem, we have

(2.18) I(2)n =

∞∑
k=1

exp{it2k} − 1

2k(k + n)(k + n+ 1)
∼ 1

n2

∞∑
k=1

exp{it2k} − 1

2k
as n→∞.

On the other hand,

I(1)n =

0∑
k=−n+1

exp{it2k} − 1

2k(k + n)(k + n+ 1)
(2.19)

=

0∑
k=−n+1

exp{it2k} − 1− it2k

2k(k + n)(k + n+ 1)
+

0∑
k=−n+1

it

(k + n)(k + n+ 1)

=
1

n2

0∑
k=−n+1

exp{it2k} − 1− it2k

2k(1 + k
n )(1 + k+1

n )
+ it

(
1− 1

n+ 1

)
.

Since

exp{it2−n+1} − 1− it2−n+1

2−n+1(1 + −n+1
n )(1 + −n+2

n )
= O

(
t2n2

2n

)
as n→∞,

we have

(2.20) lim
n→∞

0∑
k=−n+1

exp{it2k} − 1− it2k

2k(1 + k
n )(1 + k+1

n )
=

0∑
−∞

exp{it2k} − 1− it2k

2k
.
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Combining (2.17), (2.18), (2.19) and (2.20), we get

f

(
t

Nn

)
− 1

=
1

n2Nn

{
0∑
−∞

exp{it2k} − 1− it2k

2k
+ in2t+

∞∑
k=1

exp{it2k} − 1

2k
+ o(1)

}

=
1

n2Nn

{
g(t) + in2t+ o(1)

}
as n→∞.

By (2.16) we can also get

fNn(t) =

{
1 +

g(t) + in2t+ o(1)

n2Nn

}n2Nn

· exp{−in2t}(2.21)

= exp{g(t)}+ o(1) as n→∞.

Thus Theorem 2.3 follows from (2.16), (2.21) and the continuity theorem of
characteristic function. �

3. Limit behaviours for the related model of FUFG

In this section, we will consider the related model of Feller’s unfair-fair-game
(1.3) and study its probability limit behaviours. Our findings show that the
limit properties of model (1.3) and model (1.1) are quite different. Since the
new model follows a long-tailed distribution (see [4]), which is widely used in
many fields, therefore it is meaningful to study in depth the probability limit
behaviours of this new model.

To prove the next theorems, we will apply the concepts of regularly varying
function, slowly varying function and their key properties.

Definition (see [7]). Let U, V be positive monotone functions on [0,∞) to
[0,∞). We say that U is a regularly varying function (at +∞) with exponent
α ∈ R if U(x) = xαV (x) where V is a slowly varying function (at +∞), that is

lim
x→∞

V (tx)

V (x)
= 1

for every t > 0.

Obviously, regularly variation and slowly variation are tail behaviours for
functions so that they are independent of their initial values. lnx, ln2 x are
slowly varing functions on (0,∞). Every slowly varying function varies regu-
larly with exponent 0.

Lemma 3.1 (Main Karamata Theorem, see [7]). Let H be positive monotone
on [0,∞) and set

Us(x) =

∫ x

0

ysH(y)dy, Vs(x) =

∫ ∞
x

ysH(y)dy.
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(i) If H varies regularly with exponent α 6 −s− 1 and Vs(x) <∞, then, as
x→∞,

xs+1H(x)

Vs(x)
→ c = −(s+ α+ 1) > 0.

Conversely, if this limit exists and is positive, then Vs and H vary regularly
with exponents −c = s+ α+ 1 and α, respectively, while if this limit is 0, then
Vs is a slowly varying function.

(ii) If H varies regularly with exponent α > −s− 1, then, as x→∞,

xs+1H(x)

Us(x)
→ c = s+ α+ 1 > 0.

Conversely, if this limit exists and is positive, then Us and H vary regularly
with exponents c = s + α + 1 and α, respectively, while if this limit is 0, then
Us is a slowly varying function.

Lemma 3.2. If s > 0, then

(3.1)

n∑
k=1

ks

(Logak)
2 = O

(
ns+1

(Logan)
2

)
as n→∞.

Proof. For every s > 0 and x large enough, xs/(Logax)2 is monotonously
increasing. So, there are constants C1 and C2 satisfying

(3.2) C1

∫ n

1

xs

(Logax)
2 dx 6

n∑
k=2

ks

(Logak)
2 6 C2

∫ n+1

2

xs

(Logax)
2 dx.

Since (Logax)
−2

is regularly varying with exponent α = 0 (is also slowly
varying), by the (ii) of Lemma 3.1, we can obtain

(3.3)

∫ n

1

xs

(Logax)
2 dx = O

(
ns+1

(Logan)
2

)
=

∫ n+1

2

xs

(Logax)
2 dx as n→∞.

Combining (3.2) and (3.3), it’s easy to see that (3.1) holds.
If s = 0, then we only change the direction of inequalities (3.2) to know that

(3.1) is also true. �

With the above preparations, now we start to research the limit properties
of model (1.3). Let X1, X2, . . . be independent random variables with the same
distribution described in (1.3), we obtain the following results about its weak
law of large numbers, strong law of large numbers and central limit theorem,
respectively.

Theorem 3.3. Let X1, X2, · · · be independent random variables with the same
distribution described in (1.3), bn = (Logan)n. Then

(3.4)
Sn
bn
→ 0 in probability.
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Proof. Let mn = [bn], it’s easy to verify that Logamn ∼ nLogaLogan as n →
∞. Suppose that X̃i = XiI(Xi 6 bn), S̃n =

∑n
i=1 X̃i. We have

P
{
S̃n 6= Sn

}
= P

{
n⋃
i=1

{X̃i 6= Xi}

}
(3.5)

6 nP {X1 > bn}

6 n
∞∑

k=mn+1

1

ck(Logak)2

6
Cn

Logamn

6
C

LogaLogan
→ 0 as n→∞.

By Lemma 3.2 we also have

µ̃1 = EX̃1 =

mn∑
k=1

1

c(Logak)2
= O

(
bn

(nLogaLogan)2

)
.

Applying the Chebyshev’s inequality and Lemma 3.2 we can get

P

{∣∣∣ S̃n − nµ̃1

bn

∣∣∣ > ε

}
= P

{∣∣∣ n∑
i=1

(
X̃i − µ̃1

) ∣∣∣ > εbn

}
(3.6)

6
1

ε2b2n
E
∣∣∣ n∑
i=1

(
X̃i − µ̃1

) ∣∣∣2
6

1

ε2b2n
E

(
n∑
i=1

X̃2
i

)

=
n

ε2b2n

mn∑
k=1

k

c(Logak)2

6
Cn

b2n
· m2

n

(Logamn)2

=
C

n(LogaLogan)2
→ 0 as n→∞.

By (3.5) and (3.6) we can also get

(3.7)
Sn − nµ̃1

bn
→ 0 in probability.

Therefore (3.4) follows from (3.7) and nµ̃1/bn → 0 as n → ∞. The proof of
Theorem 3.3 is completed. �
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Theorem 3.4. Let X1, X2, . . . be independent random variables with the same
distribution described in (1.3), bn = (Logan)n. Then

(3.8) lim inf
n→∞

Sn
bn

= 0 a.s., and lim sup
n→∞

Sn
bn

= +∞ a.s..

Proof. Since Xi > 0 a.s. thus

lim inf
n→∞

Sn
bn
> 0 a.s..

From Theorem 3.3 we know that there exists a subsequence {nk} of N such
that

lim
k→∞

Snk
bnk

= 0 a.s..

Therefore the first part of (3.8) holds.
To prove the second part of (3.8) we first prove

(3.9) lim sup
n→∞

Xn

bn
= +∞ a.s..

In fact, for every M > 0,
∞∑
n=1

P {Xn > Mbn} =

∞∑
n=1

∞∑
k=[Mbn]+1

1

ck (Logak)
2

> C
∞∑
n=1

1

Loga([Mbn] + 1)

> C
∞∑
n=1

1

nLogan
= +∞.

By the second Borel-Cantelli lemma we know that

P

{
Xn

bn
> M, i.o.

}
= 1.

So (3.9) holds. Since limn→∞ bn−1/bn = 0, it follows that

lim sup
n→∞

Sn
bn

= lim sup
n→∞

(
Xn

bn
+
Sn−1
bn−1

· bn−1
bn

)
> lim sup

n→∞

Xn

bn
+ lim inf

n→∞

Sn−1
bn−1

· lim
n→∞

bn−1
bn

= +∞.

The last step above follows from (3.9) and the first part of (3.8) proved just
now. The proof of Theorem 3.4 is completed. �

Remark 3.5. Since Xn > 0 a.s., for any ε > 0,
∞∑
n=1

P{Xn < εbn} =

∞∑
n=1

P{X1 < εbn} = +∞,
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by the second Borel-Cantelli lemma we know P{Xn < εbn i.o.} = 1, conse-
quently

lim inf
n→∞

Xn

bn
= 0 a.s..

Theorem 3.6. Let X1, X2, . . . be independent random variables with the same
distribution described in (1.3), tn = an(Logan)

γ

, γ > 1. Then

lim
n→∞

Sn
tn

= 0 a.s..

Proof. Let X̃i = XiI (Xi 6 tn). Since
∞∑
n=1

P{Xn > tn} =

∞∑
n=1

P{X1 > tn}

=

∞∑
n=1

∞∑
k=[tn]+1

1

k(Logak)2

6 C
∞∑
n=1

1

Logatn

6 C
∞∑
n=1

1

n(Logan)γ
<∞,

by the Borel-Cantelli lemma we know

(3.10) P{X̃n 6= Xn i.o.} = 0.

Let S̃n =
∑n
i=1 X̃i. By Lemma 3.2, it’s easy to get

µ̃1 = EX̃1 =

[tn]∑
k=1

1

c(Logak)2
= O

(
tn

(Logatn)
2

)
= O

(
tn

n2 (Logan)
2γ

)
.

For any ε > 0, applying the Chebyshev’s inequality and Lemma 3.2 we have
∞∑
n=1

P

{
S̃n − nµ̃1

tn
> ε

}
=

∞∑
n=1

P
{
S̃n > nµ̃1 + εtn

}
≤
∞∑
n=1

P
{
S̃n > εtn

}
6
∞∑
n=1

1

ε2t2n
ES̃2

n

=

∞∑
n=1

n

ε2t2n
EX̃2

1

=

∞∑
n=1

n

ε2t2n

[tn]∑
k=1

k

c(Logak)2
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6 C
∞∑
n=1

n

t2n
· t2n

(Logatn)2

6 C
∞∑
n=1

1

n(Logan)2γ
<∞.

From the Borel-Cantelli lemma it follows that

P

{
S̃n − nµ̃1

tn
> ε i.o.

}
= 0,

thus

lim
n→∞

S̃n − nµ̃1

tn
= 0 a.s..

Since
nµ̃1

tn
= O

(
1

n (Logan)
2γ

)
→ 0,

we have

lim
n→∞

S̃n
tn

= 0 a.s..

It follows from (3.10) that there exists a positive integer N such that X̃i = Xi

a.s. for all i > N . Now, for n > N ,

S̃n = X̃1 + · · ·+ X̃N +XN+1 + · · ·+Xn = S̃N + Sn − SN a.s..

Because limn→∞ S̃N/tn = 0 a.s. and limn→∞ SN/tn = 0 a.s., so

lim
n→∞

Sn
tn

= lim
n→∞

S̃n
tn
− lim
n→∞

S̃N
tn

+ lim
n→∞

SN
tn

= 0 a.s.

The proof of Theorem 3.6 is completed. �

Theorem 3.7. Let X1, X2, . . . be independent random variables with the same

distribution described in (1.3). X̃i = XiI (Xi 6 n), S̃n =
∑n
i=1 X̃i, µ̃1 = EX̃1,

σ̃2
1 = VarX̃1. Then

S̃n − nµ̃1

σ̃1
√
n

d−→ N(0, 1).

Proof. Using Lemma 3.2 and the Cr-inequality, we can get

µ̃1 = EX̃1 =

n∑
k=1

1

c(Logak)2
= O

(
n

(Logan)2

)
,

σ̃2
1 = VarX̃1 = EX̃2

1 − µ̃2
1 =

n∑
k=1

k

c(Logak)2
− µ̃2

1 = O

(
n2

(Logan)2

)
,

E|X̃1 − µ̃1|3 6 4
(
EX̃3

1 + µ̃3
1

)
= 4

n∑
k=1

k2

c(Logak)2
+ 4µ̃3

1 = O

(
n3

(Logan)2

)
.
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Therefore

ρ̃ =
E|X̃1 − µ̃1|3

σ̃3
1

= O

(
n3

(Logan)2
· (Logan)3

n3

)
= O (Logan) .

By the Esseen’s inequality (see [12]) we know

sup
−∞<x<∞

∣∣∣∣∣P
{
S̃n − nµ̃1

σ̃1
√
n
6 x

}
− Φ(x)

∣∣∣∣∣ 6 Cρ̃√
n
6
CLogan√

n
→ 0 as n→∞,

where Φ(x) denotes the distribution function of the standard normal random
variable N(0, 1). The proof of Theorem 3.7 is completed. �
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