• Title/Summary/Keyword: Landslide characteristics

Search Result 197, Processing Time 0.023 seconds

GIS-based Landslide Susceptibility Mapping of Bhotang, Nepal using Frequency Ratio and Statistical Index Methods

  • Acharya, Tri Dev;Yang, In Tae;Lee, Dong Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.357-364
    • /
    • 2017
  • The purpose of the study is to develop and validate landslide susceptibility map of Bhotang village development committee, Nepal using FR (Frequency Ration) and SI (Statistical Index) methods. For the purpose, firstly, a landslide inventory map was constructed based on mainly high resolution satellite images available in Google Earth Pro, and rest fieldwork as verification. Secondly, ten conditioning factors of landslide occurrence, namely: altitude, slope, aspect, mean topographic wetness index, landcover, normalized difference vegetation index, dominant soil, distance to river, distance to lineaments and rainfall, were derived and used for the development of landslide susceptibility map in GIS (Geographic Information System) environment. The landslide inventory of total 116 landslides was divided randomly such that 70% were used for training and remaining 30% for validating result by receiver operating characteristics curve analysis. The area under the curve were found to be greater than 0.7 indicating an acceptable susceptibility maps obtained using FR and SI methods in GIS for hilly region of Nepal.

Development of Artificial Neural Network Techniques for Landslide Susceptibility Analysis (산사태 취약성 분석 연구를 위한 인공신경망 기법 개발)

  • Chang, Buhm-Soo;Park, Hyuck-Jin;Lee, Saro;Juhyung Ryu;Park, Jaewon;Lee, Moung-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.499-506
    • /
    • 2002
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural networks and to apply the newly developed techniques for assessment of landslide susceptibility to the study area of Yongin in Korea. Landslide locations were identified in the study area from interpretation of aerial Photographs and field survey data, and a spatial database of the topography, soil type and timber cover were constructed. The landslide-related factors such as topographic slope, topographic curvature, soil texture, soil drainage, soil effective thickness, timber age, and timber diameter were extracted from the spatial database. Using those factors, landslide susceptibility and weights of each factor were analyzed by two artificial neural network methods. In the first method, the landslide susceptibility index was calculated by the back propagation method, which is a type of artificial neural network method. Then, the susceptibility map was made with a GIS program. The results of the landslide susceptibility analysis were verified using landslide location data. The verification results show satisfactory agreement between the susceptibility index and existing landslide location data. In the second method, weights of each factor were determinated. The weights, relative importance of each factor, were calculated using importance-free characteristics method of artificial neural networks.

  • PDF

Shearing characteristics of slip zone soils and strain localization analysis of a landslide

  • Liu, Dong;Chen, Xiaoping
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.33-52
    • /
    • 2015
  • Based on the Mohr-Coulomb failure criterion, a gradient-dependent plastic model that considers the strain-softening behavior is presented in this study. Both triaxial shear tests on conventional specimen and precut-specimen, which were obtained from an ancient landslide, are performed to plot the post-peak stress-strain entire-process curves. According to the test results of the soil strength, which reduces from peak to residual strength, the Mohr-Coulomb criterion that considers strain-softening under gradient plastic theory is deduced, where strength reduction depends on the hardening parameter and the Laplacian thereof. The validity of the model is evaluated by the simulation of the results of triaxial shear test, and the computed and measured curves are consistent and independent of the adopted mesh. Finally, a progressive failure of the ancient landslide, which was triggered by slide of the toe, is simulated using this model, and the effects of the strain-softening process on the landslide stability are discussed.

Development of Landslide-Risk Prediction Model thorough Database Construction (데이터베이스 구축을 통한 산사태 위험도 예측식 개발)

  • Lee, Seung-Woo;Kim, Gi-Hong;Yune, Chan-Young;Ryu, Han-Joong;Hong, Seong-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.23-33
    • /
    • 2012
  • Recently, landslide disasters caused by severe rain storms and typhoons have been frequently reported. Due to the geomorphologic characteristics of Korea, considerable portion of urban area and infrastructures such as road and railway have been constructed near mountains. These infrastructures may encounter the risk of landslide and debris flow. It is important to evaluate the highly risky locations of landslide and to prepare measures for the protection of landslide in the process of construction planning. In this study, a landslide-risk prediction equation is proposed based on the statistical analysis of 423 landslide data set obtained from field surveys, disaster reports on national road, and digital maps of landslide area. Each dataset includes geomorphologic characteristics, soil properties, rainfall information, forest properties and hazard history. The comparison between the result of proposed equation and actual occurrence of landslide shows 92 percent in the accuracy of classification. Since the input for the equation can be provided within short period and low cost, and the results of equation can be easily incorporated with hazard map, the proposed equation can be effectively utilized in the analysis of landslide-risk for large mountainous area.

Characteristics of Heavy Rainfall for Landslide-triggering in 2011 (2011년 집중호우로 인한 산사태 발생특성 분석)

  • Kim, Suk-Woo;Chun, Kun-Woo;Kim, Jin-Hak;Kim, Min-Sik;Kim, Min-Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.28-35
    • /
    • 2012
  • Rainfall is widely recognized as a major landslide-triggering factor. Most of the latest landslides that occurred in South Korea were caused by short-duration heavy rainfall. However, the relationship between rainfall characteristics and landslide occurrence is poorly understood. To examine the effect of rainfall on landslide occurrence, cumulative rainfall(mm) and rainfall intensity(mm/hr) of serial rain and antecedent rainfall(mm) were analyzed for 18 landslide events that occurred in the southern and central regions of South Korea in June and July 2011. It was found that all of these landslides occurred by heavy rainfall for one or three days, with the rainfall intensity exceeding 30 mm/hr or with a cumulative rainfall of 200 mm. These plotted data are beyond the landslide warning criteria of Korea Forest Service and the critical line of landslide occurrence for Gyeongnam Province. It was also found that the time to landslide occurrence after rainfall start(T) was shortened with the increasing average rainfall intensity(ARI), showing an exponential-decay curve, and this relation can be expressed as "T = $94.569{\cdot}exp$($-0.068{\cdot}ARI$)($R^2$=0.64, p<0.001)". The findings in this study may provide important evidences for the landslide forecasting guidance service of Korea Forest Service as well as essential data for the establishment of non-structural measures such as a warning and evacuation system in the face of sediment disasters.

Analysis of GIS for Characteristics on the Slow-Moving Landslide: With a Special Reference on Slope and Grade of Landslide (GIS를 이용한 땅밀림지 특성 분석: 산지경사 및 산사태위험등급을 중심으로)

  • Park, Jae-Hyeon;Seo, Jung Il;Lee, Changwoo
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.3
    • /
    • pp.311-321
    • /
    • 2019
  • This study was carried out to establish basic data for the development of slow-moving landslide hazard classes. Mountain slopes in slow-moving landslide areas ranged from $11.8^{\circ}$ to $37.0^{\circ}$ with a mean slope of $23.8^{\circ}$. However, the slope inclination of microtopography in slow-moving landslide areas was slightly different, with a mean slope of $23.5^{\circ}$ ($10.7^{\circ}{\sim}41.5^{\circ}$) compared with the mountain slope. There was a significant difference (p < 0.05) between the contour intervals of microtopography and the contour intervals of the slow-moving landslide areas. Among all the slow-moving landslide areas examined, 14 plots (approximately 38.0%) were classified into landslide hazard class I, 6 plots (approximately 16.0%) into landslide hazard class II, 5 plots (approximately 14.0%) into landslide hazard class III and IV, and 16 plots (approximately 43.0%) into landslide hazard class V, whereas 9 plots (approximately 24.0%) fit the no landslide hazard class.

The Characteristics Analysis of Landslides and Rainfall at Pusan Area (부산지역에서의 강우와 산사태의 특성분석)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.24-31
    • /
    • 2001
  • Most of the natural calamities occurred in South Korea are due to rainfall, which are occurred during rainy season, June to September. The life-calamity reported in those seasons were over 75%, and the dead rate by the rainfall was about 98%. Especially, the disasters occurred in Pusan and Kyongsang-Namdo were highest of the whole country. The capability of landslide in this area was very high, which is included to Class 3 or Class 4 of disastrous risk grade suggested by the GIS system(Lee Su-Gon,1999). Those are based on the characteristics of topographical and meteorological data. In this study, the rainfall characteristics in Pusan were analyzed through the relationship between the cumulative rainfall and the maximum hourly rainfall. The landslide in this area depends on the elapsed time after maximum hourly rainfall intensity, and the most of landslide in Pusan recorded during within 3 hours after pick-time of rainfall intensity.

  • PDF

A Case Study on Characteristics of Landslides in Natural Slopes (자연사면 산사태 특성에 관한 사례 연구)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Park, Nam-Sun
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.193-199
    • /
    • 2007
  • This paper is a result of a case study about landslides at Whacheon area in Kangwondo occurred during heavy rainfall in 2006. A-day-accumulative rainfalls from July 12 to July 13 and July 15 to July 16 were 120mm and 110mm respectively. Five sites at which slope failures occurred were visited to figure out main causes of slope failures by investigating characteristics of rainfall, geological formation, topography and ground surface exploration around the boundary of the landslides. Based on the site investigation characteristics of landslide with respect to rainfall pattern, geological and topographical condition and pattern of landslide were evaluated.

  • PDF

Development of Investigation and Analysis Technique to Landslides and Its Application (산사태 조사.해석 기법의 개발 및 적용)

  • Kim, Kyeong-Su;Song, Young-Suk;Chae, Byung-Gon;Cho, Yong-Chan;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.69-81
    • /
    • 2008
  • Landslide researches are divided to a method of interrelationship for various factors, method of predicting landslide possibility, and method of estimating landslide risk which are occurring landslides in the natural slope. Most of landslides occurred in natural slope are caused by a heavy rainfall in summer season. Weathered soil layer located in upper side of rock mass was occurred. As well as, they are announced to have an influence to geometry, geology, soil characteristics, and precipitation in the natural slope. In order to investigate and interpret the variety of landslides from field investigation to risk analysis, landslide analysis process due to geotechnical and geological opinions are systematically demanded. In this research, the study area is located in Macheon area, Gyeongsangnam-do and performed the landslide investigation. From the results of landslide investigation and analysis, optimized standard model based on natural landslide is proposed to high technical method of landslide investigation and interpretation.

Landslide Susceptibility Analysis in Janghung Using Spatial Relationships between Landslide and Geospatial Information (산사태와 지형공간정보의 연관성 분석을 통한 장흥지역 산사태 취약성 분석)

  • 이사로;지광훈;박노욱;신진수
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.205-215
    • /
    • 2001
  • The purpose of this study is to analyze the landslide susceptibility, containing the process, which reveals spatial relationships between landslides and geospatial data sets, which occurred in Janghung area in 1998. Landslide locations were detected from remotely sensed image and field survey and topography, soil, forest, and land use data sets were constructed as a spatial database in GIS. As the landslide occurrence factors, slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil, type, age, diameter and density of wood and land use were used. To extract the relationship between landslides and geospatial database, likelihood ratio was calculated and compared with the result of Yongin area. Also, the landslide susceptibility index was calculated by summation of the likelihood ratio and the landslide susceptibility map was generated using the index. As a result, it is expected that spatial relationships between landslides and geospatial database is helpful to explain the characteristics of lilndslide and the landslide susceptibility map is used to reduce associated hazards, and to plan land use and construction.

  • PDF