• Title/Summary/Keyword: Laminar Pipe Flow

Search Result 61, Processing Time 0.026 seconds

Frequency Response Characteristics of Hydraulic Pipeline Systems (유압관로계의 주파수 응답특성)

  • 김도태;홍성태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.38-44
    • /
    • 2000
  • An oil hydraulic line is modeled in which a pipe or two pipes of different size connected in series and terminated in a chamber, i.e. a composite line system. The frequency response characteristics are investigated analytically and experimentally. The theoretical analysis is base on unsteady laminar flow of a viscous compressible fluid. It is generally difficult to obtain exactly the frequency equation of these lines system and its solutions in consideration of viscosity of hydraulic fluid, because the diameters of two pipes and length are different. The effect of the position where the cross-sectional area of changes suddenly, the inner radius of pipe and the volume of terminal chamber on the frequency characteristics of this composite line system are also described.

  • PDF

A Study of the Characteristics of Unsteady Laminar Jet Submerged into a Suppression Pool (응축 풀 내의 비정상 층류 제트의 유동 특성에 관한 연구)

  • Choi, Yong Moon;Kim, Chong Bo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.499-507
    • /
    • 1988
  • The pressure suppression pool of BWR(Boiling Water Reactor) is subjected to hydrodynamic impact in the event of a LOCA(Loss of Coolant Accident). The pressure increase in the reactor dry cell would force the existing water of a vent pipe into the suppression pool. When the water is ejected through the pipe opening into the suppression pool, an abrupt downward force is transmitted to the suppression pool floor. Consequently, many structures installed within the pool must be able to withstand these forces. In order to determine the optimum safe locations of the pool structures, numerical analysis have been carried out to investigate the hydrodynamic behavior of the water jet. In the present analysis, a two-dimensional numerical model is utilized to solve transient flow equations.

  • PDF

A Study on the Design of Liquid Flow Control Valves for the Plants and Ships (플랜트 및 선박의 액체용 유량제어밸브 설계에 관한 연구(I))

  • 최순호;박천태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.28-35
    • /
    • 1995
  • The fluid flow for a energy transfer is essential for the design and operation of power plants, petrochemical plants and ships including a process. When the operating conditions of a plant are changed or any transitional event occured, the flow controls of a fluid must be performed to follow the new operating state or mitigate the results of a event. Generally these flow controls to accommodate the new operating state of a plant are made by the use of various valves. The refore the design of valves and the related techniques are very important to the system and component designs. However the system and component design are not familiar with the practical theory of the valve since the derivative procedures of the flow equations in a valve are difficult and it is not easy to found the theoretical foundamentals and informations about the design of a valve from the present references. In this study the flow equations applicable to a valve for liquid are theoretically derived in detail. And the definition of valve reynolds number and its boundary values between the tubulent and laminar flow is described compared with the values of a circular pipe flow.

  • PDF

Investigation of Heat Transfer Augmentation with Pseudoplastic Fluids in Annular Pipes (환상 파이프 내에서의 의소성 유체를 이용한 열전달 향상에 관한 연구)

  • Lee, Dong-Ryul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.85-91
    • /
    • 2011
  • Computational results with pseudoplastic fluid flows for fully developed non-Newtonian laminar flows have been obtained. Those consist of the product of friction factor and Modified Reynolds number and Nusselt numbers with respect to the shear rate parameter in an annular pipe. The numerical results of the product of friction factor and Reynolds numbers and the Nusselt numbers for both Newtonian region and the power law region were compared with previously published asymptotic results, respectively. In the present calculations, the product of friction factor and Newtonian Reynolds numbers for pseudoplastic fluid at power law region in annular pipe is 180% less than that for Newtonian fluid. For power law fluids with different power law flow indices, the difference of the product of friction factor and power law Reynolds number between previous and the present results at the power law region is within 0.20%. The solutions also show the effect of the shear rate parameter on the Nusselt number and about 11% increase of Nusselt number at the power region.

A Boundary Element Solution Approach for the Conjugate Heat Transfer Problem in Thermally Developing Region of a Thick Walled Pipe

  • Choi, Chang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2230-2241
    • /
    • 2006
  • This paper presents a sole application of boundary element method to the conjugate heat transfer problem of thermally developing laminar flow in a thick walled pipe when the fluid velocities are fully developed. Due to the coupled mechanism of heat conduction in the solid region and heat convection in the fluid region, two separate solutions in the solid and fluid regions are sought to match the solid-fluid interface continuity condition. In this method, the dual reciprocity boundary element method (DRBEM) with the axial direction marching scheme is used to solve the heat convection problem and the conventional boundary element method (BEM) of axisymmetric model is applied to solve the heat conduction problem. An iterative and numerically stable BEM solution algorithm is presented, which uses the coupled interface conditions explicitly instead of uncoupled conditions. Both the local convective heat transfer coefficient at solid-fluid interface and the local mean fluid temperature are initially guessed and updated as the unknown interface thermal conditions in the iterative solution procedure. Two examples imposing uniform temperature and heat flux boundary conditions are tested in thermally developing region and compared with analytic solutions where available. The benchmark test results are shown to be in good agreement with the analytic solutions for both examples with different boundary conditions.

Investigation of Pressure Drop for a Pseudo-plastic Fluid Flow in Isosceles Triangle Pipes (이등변삼각형 단면을 갖는 파이프 내의 Pseudo-Plastic 유체유동에 대한 압력강하의 연구)

  • Lee, D.R.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.30-35
    • /
    • 2009
  • Numerical Calculations for dimensionless pressure drop (friction factor times Reynolds number) have been obtained for fully developed laminar flow of MPL(Modified Power Law) fluid in isosceles triangle pipes. The solutions are valid for Pseudoplastic fluids over a wide range from Newtonian behavior at low shear rates through transition region to power law behavior at higher shear rates. The analysis identified a dimensionless shear rate parameter which for a given set of operating conditions specifies where in the shear rate range a particular system is operating, i.e., Newtonian, transition or power law region. The numerical calculation data of the dimensionless pressure drop for the Newtonian and power law regions are compared with previously published asymptotic results presenting within 0.16 % in Newtonian region and 2.98 % in power law region.

  • PDF

An experimental study on the reattachment of Non-Newtonian fluid flows in a sudden expansion pipe (돌연 확대관에서 비뉴우튼 유체의 재접착 실험)

  • 전운학;이행남
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.45-54
    • /
    • 1993
  • The reattachment lengths of the Non-Newtonian fluid are investigated in the sudden expansion pipes whose ratios are 2.316 and 3.368, and the range of the Reynolds numbers is 100-30000. The reattachment lengths for the viscoelastic fluid in the laminar flow region are found to be much shorter than those of the Newtonian fluid, and decrease significantly with the increase of the concentration of viscoelastic fluid is two or three times longer than those of water, and gradually increases with the increase of the concentration of viscoelastic fluid.

  • PDF

Experiments on Natural Convection on the Outer Surface of a Vertical Pipe by Using Fluids with High Pr Number (높은 Pr 수의 유체를 사용한 수직 원형관 외부의 자연대류 실험)

  • Kang, Gyeong-Uk;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.33-42
    • /
    • 2011
  • In this study, we investigated the natural convection on the outer surface of a vertical pipe by performing mass transfer experiments using fluids with high Pr number using the concept of analogy between heat and mass transfer. A cupric acid-copper sulfate electroplating system was adopted as the mass transfer system. Tests were performed for $Ra_H$ numbers from $1.4{\times}10^9$ to $4{\times}10^{13}$, Pr numbers from 2,094 to 4,173, and diameters from 0.005 m to 0.035 m. The test results for laminar flow conditions were in good agreement with the correlations reported by King, Jakob and Linke, McAdam, and Bottemanne, and those for turbulent conditions with the correlations presented by Fouad for a vertical plate and also proved the dependence on Pr numbers. The obtained correlations were $Nu_H=0.55Ra^{0.25}_H$ for laminar and $Nu_H=0.12Ra^{0.28}_HPr^{0.1}$ for turbulent. The transition between laminar and turbulent occurs at $Ra_H$ of about $10^{12}$.

Numerical Study on Flow and Heat Transfer Characteristics of Pipes with Various Shapes (파이프 형상에 따른 내부 열유동 특성과 성능에 관한 수치해석적 연구)

  • Park, Sang Hyeop;Kim, Sang Keun;Ha, Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.999-1007
    • /
    • 2013
  • The present work reports numerical results of the pressure drop and heat transfer characteristics of pipes with various shapes such as circular, elliptical, circumferential wavy and twisted using a three-dimensional simulation. Numerical simulations are calculated for laminar to turbulent flows. The fully developed flow in pipes was modeled using steady incompressible Reynolds-averaged Navier-Stokes (RANS) equations. The friction and Colburn factor of each pipe are compared with those of a circular tube. The overall flow and heat transfer calculations are evaluated by the volume and area goodness factor. Finally, the objective of the investigation is to find a pipe shape that decreases the pressure loss and increases the heat transfer coefficient.

An Analytic Study on Laminar Film Condensation along the Interior Surface of a Cave-Shaped Cavity of a Flat Plate Heat Pipe

  • Lee, Jin-Sung;Kim, Tae-Gyu;Park, Tae-Sang;Kim, Choong-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.966-974
    • /
    • 2002
  • An analytic approach has been employed to study condensate film thickness distribution inside cave-shaped cavity of a flat plate heat pipe. The results indicate that the condensate film thickness largely depends on mass flow rate and local velocity of condensate. The increasing rate of condensate film for circular region reveals about 50% higher value than that of vertical region. The physical properties of working fluid affect significantly the condensate film thickness, such as the condensate film thickness for the case of FC-40 are 5 times larger than that of water. In comparison with condensation on a vertical wall, the average heat transfer coefficient in the cave-shaped cavity presented 10∼15% lower values due to the fact that the average film thickness formed inside the cave-shaped cavity was larger than that of the vertical wall with an equivalent flow length. A correlation formula which is based on the condensate film analysis for the cave-shaped cavity to predict average heat transfer coefficient is presented. Also, the critical minimum fill charge ratio of working fluid based on condensate film analysis has been predicted, and the minimum fill charge ratios for FC-40 and water are about Ψ$\_$crit/=3∼7%, Ψ$\_$crit/=0.5∼1.3% respectively, in the range of heat flux q"=5∼90kW/㎡.