Investigation of Pressure Drop for a Pseudo-plastic Fluid Flow in Isosceles Triangle Pipes

이등변삼각형 단면을 갖는 파이프 내의 Pseudo-Plastic 유체유동에 대한 압력강하의 연구

  • 이동렬 (대구가톨릭대학교 기계자동차공학부)
  • Published : 2009.04.30

Abstract

Numerical Calculations for dimensionless pressure drop (friction factor times Reynolds number) have been obtained for fully developed laminar flow of MPL(Modified Power Law) fluid in isosceles triangle pipes. The solutions are valid for Pseudoplastic fluids over a wide range from Newtonian behavior at low shear rates through transition region to power law behavior at higher shear rates. The analysis identified a dimensionless shear rate parameter which for a given set of operating conditions specifies where in the shear rate range a particular system is operating, i.e., Newtonian, transition or power law region. The numerical calculation data of the dimensionless pressure drop for the Newtonian and power law regions are compared with previously published asymptotic results presenting within 0.16 % in Newtonian region and 2.98 % in power law region.

Keywords

References

  1. Shah R. K. and London A. L., 1978, "Laminar Flow Forced Convection in ducts, Supplement 1 to Advances in Heat Transfer (T. F. Irvine,Jr, and J. P. Hartnett, ed.)", Academic Press, New York, pp. 227-231.
  2. Sparrow E. M., 1962, "Laminar Flow in Isosceles Triangular ducts", AIChE J., Vol. 8, pp. 599-605. https://doi.org/10.1002/aic.690080507
  3. Migay V. K., 1963, "Hydraulic Resistance of Triangular Channels in Laminar Flow", Enegry, Vol. 6, No. 5, pp. 122-130.
  4. Eckert E. R. G. and Irvine T. F. Jr, 1960, "Pressure Drop and Heat Transfer in a duct with Triangular Cross Section", J. Heat Transfer, Vol. 82, pp. 125-132. https://doi.org/10.1115/1.3679891
  5. Kozicki W. C., Chou H. and Tiu C., 1966, "Non-Newtonian Flow in ducts of Arbitrary Cross-Sectional Shape", Chemical Engineering Science, Vol. 21, pp. 665-669. https://doi.org/10.1016/0009-2509(66)80016-7
  6. Kozicki W. and Tiu C., 1971, "Improved Parametris Characterization of Flow Geometries", Canadian J. Chem. Eng., Vol. 49, pp. 562-574. https://doi.org/10.1002/cjce.5450490503
  7. Sutterby J. L. 1966, "Laminar Converging Flow of Dilute Polymer Solution in Conical Section-I. Viscosity Data, New Viscosity Model, Tube Flow Solution", AIChE J., Vol. 12, pp. 63-77. https://doi.org/10.1002/aic.690120114
  8. Cross M. M., 1965, "Rheology of Non-Newtonian Fluids: A New Equation for Pseudoplastic Systems", J. Colloid. Sci., Vol. 20, pp. 417-428. https://doi.org/10.1016/0095-8522(65)90022-X
  9. Carreau P. J., 1972, "Rheological Equations from Molecular Network Theory", Tran. Soc. Rheol., Vol. 16, pp. 99-110. https://doi.org/10.1122/1.549276
  10. Dunleavy J. E. and Middleman S., 1966, "Relation of Shear Behavior of Solution of Polyisobutylene", Tran. Soc. Rheol., Vol. 10, pp. 151-164.
  11. Brewster R. A. and Irvine T. F. Jr, 1987, "imilitude Considerations in Laminar Flow of Modified Power Law Fluids in Circular ducts", Wame und Stuffuertragung, Vol. 21, pp. 83-88.
  12. Park S., 1991, "Pressure Drop for a Modified Power Law Fluid Flow in a Rectangular duct", Ph.D. Thesis, Mechanical Eng.Dept., State Univ. of New York.
  13. Park S., Irvine T. F. Jr and Capobianchi M., 1993, "Experimental and Numerical Study of Friction Factor for a Modified Power Law Fluid Flow in a Rectangular duct", Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Elsevier, New York, pp. 900-908.
  14. Capobianchi M. and Irvine T. F. Jr, 1992, "Predictions of Pressure Drop and Heat Transfer in Concentric Annular ducts with Modified Power Law Fluids", Wame und Stuffuertragung, Vol. 27, pp. 209-215.
  15. Chang J. A. 1985, "Laminar Forced Convective Heat Transfer of Power Law Fluids in Isosceles ducts with Peripheral Wall Condition", Ph. D. Thesis, Mecha- nical Eng. Dept., State Univ. of New York.