• Title/Summary/Keyword: Lactobacillus isolation

Search Result 129, Processing Time 0.032 seconds

Lactic Acid Bacteria in Total Mixed Ration Silage Containing Soybean Curd Residue: Their Isolation, Identification and Ability to Inhibit Aerobic Deterioration

  • Li, Y.;Wang, F.;Nishino, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.516-522
    • /
    • 2016
  • We investigated the effects of the predominant lactic acid bacteria (LAB) on the fermentation characteristics and aerobic stability of total mixed ration (TMR) silage containing soybean curd residue (SC-TMR silage). The SC-TMR materials were ensiled in laboratory silos for 14 or 56 days. LAB predominant in SC-TMR silage were identified (Exp. 1). Lactobacillus fermentum (L. fermentum) and Streptococcus bovis (S. bovis) were found in the untreated materials, Leuconostoc pseudomesenteroides (L. pseudomesenteroides) in 14-day silage and Lactobacillus plantarum (L. plantarum) in all silages. Pediococcus acidilactici (P. acidilactici), Lactobacillus paracasei (L. paracasei), and Lactobacillus brevis (L. brevis) formed more than 90% of the isolates in 56- day silage. Italian ryegrass and whole crop maize were inoculated with P. acidilactici and L. brevis isolates and the fermentation and aerobic stability determined (Exp. 2). Inoculation with P. acidilactici and L. brevis alone or combined improved the fermentation products in ryegrass silage and markedly enhanced its aerobic stability. In maize silage, P. acidilactici and L. brevis inoculation caused no changes and suppressed deterioration when combined with increases in acetic acid content. The results indicate that P. acidilactici and L. brevis may produce a synergistic effect to inhibit SC-TMR silage deterioration. Further studies are needed to identify the inhibitory substances, which may be useful for developing potential antifungal agents.

Isolation and Identification of Lactobacillus plantarum CIB 001 with Bile Salt Deconjugation Activity from Kimchi (김치로부터 담즙산 분해능이 우수한 Lactobacillus plantarum CIB 001의 분리 및 동정)

  • Cha, Sang-Do;Kim, Tae-Woon;Lee, Dong-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.222-226
    • /
    • 2010
  • This study was carried out to isolate and characterize the Lactobacillus plantarum with bile salt deconjugation activity that was isolated from Kimchi. Some isolates were selected and identified as L. plantarum by 16S rRNA gene sequence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of whole cell protein patterns. They were assayed to determine their capacities to express bile salt hydrolase (BSH) activity. Among the identified strains, L. plantarum CIB 001 showed the highest level of BSH activity. Then, resistance to gastric acidity and bile condition were analyzed for further characterization. This strain was able to maintain viability for 1h at pH 2.0 and to survive in a MRS (deMan, Rogosa, and Sharpe) broth with 1.0% of bile acids. L. plantarum CIB 001 would potentially be useful in the food industry as probiotics.

Isolation and Identification of Noble Lactic Acid Bacteria

  • Yeo, Han-Cheol;Jang, Jin-Young;Park, Hyeong-Jun;Min, Byung-Tae;Yoo, Min
    • Quantitative Bio-Science
    • /
    • v.37 no.2
    • /
    • pp.125-132
    • /
    • 2018
  • In this study, noble strains of lactic acid bacteria were isolated and identified by genetic analysis of 16s rRNA. Also, pH-dependent growth curve, cholesterol assimilation ability and sugar production efficiency were measured. Lactic acid bacteria were identified to inhabit in the milks from various animals. Results of sequence analysis showed that there were differences in 16S rRNA sequence among strains and part of gene deletion was also recognized. Growth rates were varied, too, depending on the pH of the medium. Lactobacillus rhamnosus LOCK908 isolated from cow milk showed the highest growth rate and high cholesterol assimilation ability. Results of sugar fermentation tests were relatively consistent with the sequencing results. So, we propose newly isolated Lactobacillus rhamnosus LOCK908 as useful candidate for a starter of fermented beverage and probiotics. Results of this study will contribute to the isolation and identification of noble Lactic acid bacteria and to the public health.

Isolation and Identification of Major Microbial Groups during Baikkimchi Fermentation (백김치 발효중 주요 미생물 군집의 분리 및 동정)

  • 소명환;김영배
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.3
    • /
    • pp.350-359
    • /
    • 1997
  • The changes in pH, acid contents and microbial counts were investigated during fermentation of Baikkimchi, a kind of Kimchi without red pepper, and the major microbial groups were also isolated and identified. Immediately after the preparation of Baikkimchi(pH 6.15, acid contents 0.03%), its major microbial group was Gram negative rods, and was composed of Pseudomonas(55%), Enterobacter(40%) and Erwinia(5%). After 2 days of fermentation at 15$^{\circ}C$, the most predominant microbial group was changed to lactic acid bacteria. Lactic acid bacteria showed 1st, 2nd and 3rd stationary phase on its growth curve in 4, 12 and 50 days of fermentation, respectively. At the 2nd stationary phase of lactic acid bacteria(pH 3.51, acid contents 0.59%), the group was composed of Lactobacillus bavaricus(55%), Leuconostoc mesenteroides subsp. mesenteroides(42.5%) and Leuconostoc paramesenteroides(2.5%), while at the 3rd stationary phase(pH 3.40, acid contents 1.10%), that was Lactobacillus plantarum(65%) and Lactobacillus brevis(35%). The physiological and biochemical characteristics identified as Leuconostoc mesenteroides subsp. mesenteroides, Leuconostoc paramesenteroides, Lactobacillus plantarum and Lactobacillus brevis showed good agreement with the current taxonomic system, but those identified as Lactobacillus bavaricus showed some disagreements. The number of yeast was decreased wit the increase in the number of lactic acid bacteria. Yeast showed stationary phase in 30 days between the 2nd and 3rd stationary phase of lactic acid bacteria, and the group was composed of only gunus Saccharomyces.

  • PDF

Biochemical and Molecular Identification of Antibacterial Lactic Acid Bacteria Isolated from Kimchi (김치에서 항균활성 유산균의 분리 및 동정)

  • Kim, Soo-Young;Kim, Jong-Doo;Son, Ji-Soo;Lee, Si-Kyung;Park, Kab-Joo;Park, Myeong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.446-452
    • /
    • 2011
  • Total 480 lactic acid-producing bacteria were isolated from five kinds of kimchi, and their antibacterial activity was tested against Salmonella enterica serovar Typhimurium, Bacillus subtilis, and Pseudomonas aeruginosa using an agar diffusion assay. Among them, 340 isolates showed a halo on MRS agar against one or more indicator strains, which were identified using multiplex PCR, an API 50CHL kit, and a 16S rDNA sequence analysis. As a result, 169 Lactobacillus plantarum, 20 Lactobacillus fermentum, two Lactobacillus paracasei ssp. paracasei, two Lactobacillus sp., and 15 Pediococcus sp. were identified. This may be the first report on the isolation of antibacterial Lactobacillus fermentum from kimchi.

Isolation and Identification of Lactobacillus kimchicus sp.nov and Bioconversion of Ginseng Saponin

  • Liang, Zhi-Qi;Kim, Ho-Bin;Kim, Yeon-Ju;Wang, Hong-Tao;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.15-15
    • /
    • 2010
  • Ginseng contained many different kinds of saponin which was the most valuable for people, but its yield cannot satisfy the demand using traditional extract methods. Enzyme transformation is a conformable and highly performed method which was fit for today. A ${\beta}$-glucosidase producing bacterium ($DCY51^T$) was isolated from Korean fermented-vegetable food kimchi. The 16S rRNA gene sequence analysis revealed that the strain $DCY51^T$ belongs to the genus Lactobacillus. The highest sequence similarity was found with Lactobacillus paracollinoides LMG $22473^T$ and Lactobacillus collinoides LMG $9194^T$ with levels of 16S rDNA similarity of 97.4% and 97.3%, respectively. Based on the above results the strain $DCY51^T$ placed in the genus Lactobacillus and proposed a new species, Lactobacillus kimchicus sp. nov. $DCY51^T$ (= KCTC $12976^T$ = JCM $15530^T$). It was culture solution reacted with Red Ginseng extract and $Rb_1$, respectively. The medium of bacteria was the liquid of MRS, the temperatures of growing and reacting between bacteria liquid and saponin were samely $37^{\circ}C$, there spective reacting time were 12 hours and 48 hours. Thus we got different saponins, and TLC and HPLC analysis showed that: enzyme respectively reacted with $Rb_1$ and Red Ginseng extract got the transformed saponin, respectively. The polarity position in TLC was a little higher than Rd; and the polarity position was the same as that of Compound K's, the saponin obtained from HPLC and other experimental results was not Compound K. The constitution of its saponin was hoped to be further confirmed.

  • PDF

Isolation and Identification of Lactic Acid Bacteria Inhibiting Gastro-intestinal Pathogenic Bacteria of Domestic Animal. (가축 소화기 병원성 세균을 저해하는 유산균의 분리 및 동정)

  • Lee, Jae-Yeon;Hwang, Kyo-Yeol;Kim, Hyun-Soo;Kim, Geun;Sung, Soo-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.129-134
    • /
    • 2002
  • To isolate probiotic lactic acid bacteria having superior inhibitory activities against animal gastro-intestinal pathogenic bacteria such as Salmonella gallinarum, Staphylococcus aureus and Escherichia coli, 130 strains were initially isolated from the small intestines of Korean native chickens and 7 lactic acid bacteria were finally selected. By using API CHL kit and 16S rRNA sequencing method, the selected lactic acid bacteria were found to be belonged to genus Lactobacillus except BD14 identified as Pediococcus pentosaceus. Especially, Lactobacillus pentosus K34 showed the highest resistancy to both of HCl and bile salt, as well as the highest inhibitory activities against S. gallinarum, S. aureus and E. coli. All the selected strains were sensitive to various antibiotics such as neomycin, erythromycin, cephalosporin, amoxicillin/clavulanic acid, ampicillin, oxytetracycline, but resistant to ciprofloxacin. All the selected strains except BL strain were resistant to colistin and streptomycin, and BD14, BD16, K34 strains were resistant to gentamicin.

Enzyme-assisted extraction of Ecklonia cava fermented with Lactobacillus brevis and isolation of an anti-inflammatory polysaccharide

  • Lee, Won-Woo;Ahn, Ginnae;Wijesinghe, W.A.J.P.;Yang, Xiudong;Ko, Chang-Ik;Kang, Min-Cheol;Lee, Bae-Jin;Jeon, You-Jin
    • ALGAE
    • /
    • v.26 no.4
    • /
    • pp.343-350
    • /
    • 2011
  • Fermentation and enzyme-assisted extraction (EAE) improve nutritional and functional properties of foods by increasing the extraction of active compounds, ingestion rates, and body absorption. In this study, we investigated whether applying the EAE process improves the extraction and isolation efficiency of a polysaccharide from fermented Ecklonia cava (FE), which inhibited NO production in lipopolysaccharide (LPS)-activated RAW 264.7 cells. The results showed that the FE using the fungi Candida utilis and two different bacteria, namely Lactobacillus brevis and Saccharomyces cerevisiae increased protein and carbohydrate contents in comparison with those in non-fermented E. cava (NE). Aqueous extracts of fermented E. cava increased extraction yields and carbohydrate content, compared with the aqueous extract of NE. In addition, treating LPS-stimulated RAW 264.7 cells with aqueous extracts resulted in reduced NO production compared to that in LPS-treated cells. Ten EAEs of L. brevis-fermented E. cava (LFE) improved NO inhibitory effects in LPS-activated RAW 264.7 cells and the Viscozyme extract (VLFE) from the resulting extracts showed the highest NO inhibitory effect. We found that the >30 kDa fraction of VLFE led to markedly high inhibition of LPS-induced NO production as compared to that in the <30 kDa fraction. The crude polysaccharide isolated from >30 kDa fraction (VLFEP) consisted of fucose and markedly decreased NO production induced by LPS stimulation. VLFEP could be useful as an anti-inflammatory agent to suppress macrophage activation.

Isolation and Identification of Bacteriocin-Producing Lactic Acid Bacteria (유용 박테리오신을 생산하는 유산균의 분리와 동정)

  • Hong, Sung Wook;Bae, Hyo Ju;Chang, Jin Hee;Kim, So-Young;Choi, Eun-Young;Park, Beom Young;Chung, Kun Sub;Oh, Mi-Hwa
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.153-159
    • /
    • 2013
  • Lactic acid bacteria are microorganisms that are closely associated with human and/or animal environments, and are categorized as generally recognized as safe (GRAS) organisms due to their ubiquitous appearance in foods and their contribution to the healthy microflora of mucosal surfaces. This study was performed to isolate and identify lactic acid bacteria with antagonistic effects against food-borne pathogens. A total of 3,000 acid-producing bacteria were isolated from infant feces, cattle feces, goat feces, dog feces, pig feces, vaginal tracts, vegetables, fruits, Kimchi, Jeotgal, fermented sausages, raw milk, cheese, yogurt, Cheonggukjang, Meju, and Makgeolli cultured on MRS agar with 0.05% bromocresol purple. For the isolation of bacteriocin-producing bacteria, the diameter of the clear zone was measured on MRS agar plates. Twenty-six isolates exhibited strong antibacterial activity against indicator strains such as Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica serovar Enteritidis. Lactic acid bacteria were identified as Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, Lactobacillus acidophilus, Lactobacillus amylovorus, Lactobacillus curvatus, Lactobacillus plantarum, and Pediococcus acidilactici by 16S rDNA gene sequence analysis. The results of this study suggest that the isolates could be used as potential probiotic starters for functional food applications.

  • PDF

Isolation and Characteristics of a Homofermentative lactic Acid Bacterium (호모발효 젖산군의 분리 및 특성)

  • 하미영;정선용;김성준
    • KSBB Journal
    • /
    • v.17 no.4
    • /
    • pp.333-338
    • /
    • 2002
  • This study was targeted to isolate and characterize a bacterium producing lactic acid in a large amount. Lactic acid bacteria of about fifty strains were isolated from kimchi, a Korean traditional fermented vegetable food. Strain KH-1 of them was most effective in the lactic acid production and showed 99% homology with Lactobacillus casei from analysis of 16S rRNA sequencing. The conversion ratio of lactic acid from glucose by 1. casei KH-1 was 98% in anaerobic condition, and the lactic acid was composed as racemic mixture of D(-)-and L(+)-lactic acid, 7% and 93%, respectively. This result indicated that L. casei KH-1 was a homofermentative bacterium mainly producing L(+)-lactic acid. The strain KH-1 used glucose as a preferential substrate but not utilized lactose. In investigation of more inexpensive nitrogen source for cultivation of strain KH-1 using industrial MRS medium, when yeast extract and corn steep liquor were used at the ratio of 1 to 1, the molar yield of lactic acid produced per mole of glucose(Yp/s) was 1.09.