DOI QR코드

DOI QR Code

Enzyme-assisted extraction of Ecklonia cava fermented with Lactobacillus brevis and isolation of an anti-inflammatory polysaccharide

  • Lee, Won-Woo (Department of Marine Life Science, Jeju National University) ;
  • Ahn, Ginnae (Laboratory of Veterinary Molecular Pathology and Therapeutics, Tokyo University of Agriculture and Technology) ;
  • Wijesinghe, W.A.J.P. (Department of Marine Life Science, Jeju National University) ;
  • Yang, Xiudong (Department of Marine Life Science, Jeju National University) ;
  • Ko, Chang-Ik (Department of Marine Life Science, Jeju National University) ;
  • Kang, Min-Cheol (Department of Marine Life Science, Jeju National University) ;
  • Lee, Bae-Jin (Marine Bioprocess Co. Ltd.) ;
  • Jeon, You-Jin (Department of Marine Life Science, Jeju National University)
  • Received : 2011.09.17
  • Accepted : 2011.11.20
  • Published : 2011.12.15

Abstract

Fermentation and enzyme-assisted extraction (EAE) improve nutritional and functional properties of foods by increasing the extraction of active compounds, ingestion rates, and body absorption. In this study, we investigated whether applying the EAE process improves the extraction and isolation efficiency of a polysaccharide from fermented Ecklonia cava (FE), which inhibited NO production in lipopolysaccharide (LPS)-activated RAW 264.7 cells. The results showed that the FE using the fungi Candida utilis and two different bacteria, namely Lactobacillus brevis and Saccharomyces cerevisiae increased protein and carbohydrate contents in comparison with those in non-fermented E. cava (NE). Aqueous extracts of fermented E. cava increased extraction yields and carbohydrate content, compared with the aqueous extract of NE. In addition, treating LPS-stimulated RAW 264.7 cells with aqueous extracts resulted in reduced NO production compared to that in LPS-treated cells. Ten EAEs of L. brevis-fermented E. cava (LFE) improved NO inhibitory effects in LPS-activated RAW 264.7 cells and the Viscozyme extract (VLFE) from the resulting extracts showed the highest NO inhibitory effect. We found that the >30 kDa fraction of VLFE led to markedly high inhibition of LPS-induced NO production as compared to that in the <30 kDa fraction. The crude polysaccharide isolated from >30 kDa fraction (VLFEP) consisted of fucose and markedly decreased NO production induced by LPS stimulation. VLFEP could be useful as an anti-inflammatory agent to suppress macrophage activation.

Keywords

References

  1. Ahn, G., Hwang, I., Park, E., Kim, J., Jeon, Y. -J., Lee, J., Park, J. W. & Jee, Y. 2008a. Immunomodulatory effects of an enzymatic extract from Ecklonia cava on murine splenocytes. Mar. Biotechnol. 10:278-289. https://doi.org/10.1007/s10126-007-9062-9
  2. Ahn, G., Park, E., Kim, D. S., Jeon, Y. -J., Shin, T., Park, J. W., Woo, H. -C., Lee, W. -W. & Jee, Y. 2008b. Anti-inflammatory effects of enzymatic extract from Ecklonia cava on TPA-induced ear skin edema. Food Sci. Biotechnol. 17:745-750.
  3. Ahn, G., Park, E., Lee, W. -W., Hyun, J. -W., Lee, K. -W., Shin, T., Jeon, Y. -J. & Jee, Y. 2011. Enzymatic extract from Ecklonia cava induces the activation of lymphocytes by IL-2 production through the classical $NF-\kappa B$ pathway. Mar. Biotechnol. 13:66-73. https://doi.org/10.1007/s10126-010-9270-6
  4. Ahn, G. -N., Kim, K. -N., Cha, S. -H., Song, C. -B., Lee, J., Heo, M. -S., Yeo, I. -K., Lee, N. -H., Jee, Y. -H., Kim, J. -S., Heu, M. -S. & Jeon, Y. -J. 2007. Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and $H_{2}O_{2}$-mediated DNA damage. Eur. Food Res. Technol. 226:71-79. https://doi.org/10.1007/s00217-006-0510-y
  5. Athukorala, Y., Ahn, G. N., Jee, Y. -H., Kim, G. -Y., Kim, S. -H., Ha, J. -H., Kang, J. -S., Lee, K. -W. & Jeon, Y. -J. 2009. Antiproliferative activity of sulfated polysaccharide isolated from an enzymatic digest of Ecklonia cava on the U-937 cell line. J. Appl. Phycol. 21:307-314. https://doi.org/10.1007/s10811-008-9368-7
  6. Athukorala, Y., Jung, W. -K., Vasanthan, T. & Jeon, Y. -J. 2006. An anticoagulative polysaccharide from an enzymatic hydrolysate of Ecklonia cava. Carbohydr. Polym. 66:184-191. https://doi.org/10.1016/j.carbpol.2006.03.002
  7. Chang, H. -P., Huang, S. -Y. & Chen, Y. -H. 2005. Modulation of cytokine secretion by garlic oil derivatives is associated with suppressed nitric oxide production stimulated macrophages. J. Agric. Food Chem. 53:2530-2534. https://doi.org/10.1021/jf048601n
  8. Chen, I. -N., Ng, C. -C., Wang, C. -Y. & Chang, T. -L. 2008. Lactic fermentation and antioxidant activity of Zingiberaceae plants in Taiwan. Int. J. Food Sci. Nutr. 60:57-66. https://doi.org/10.1080/09637480802375531
  9. Couto, S. R. & Sanroman, M. A. 2006. Application of solid-state fermentation to food industry: a review. Food Engin. 76:291-302. https://doi.org/10.1016/j.jfoodeng.2005.05.022
  10. Cui, Y. -Q., Zhang, L. -J., Zhang, T., Luo, D. -Z., Jia, Y. -J., Guo, Z. -X., Zhang, Q. -B., Wang, X. & Wang, X. -M. 2010. Inhibitory effect of fucoidan on nitric oxide production in lipopolysaccharide-activated primary microglia. Clin. Exp. Pharmacol. Physiol. 37:422-428. https://doi.org/10.1111/j.1440-1681.2009.05314.x
  11. Dordevic, T. M., Siler-Marinkovic, S. S. & Dimitrijevic-Brankovic, S. I. 2010. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem. 119:957-963. https://doi.org/10.1016/j.foodchem.2009.07.049
  12. Fan, J., Zhang, Y., Chang, X., Saito, M. & Li, Z. 2009. Changes in the radical scavenging activity of bacterial-type douchi, a traditional fermented soybean product, during the primary fermentation process. Biosci. Biotechnol. Biochem. 73:2749-2753. https://doi.org/10.1271/bbb.90361
  13. Fernandez-Orozco, R., Frias, J., Munoz, R., Zielinski, H., Piskula, M. K., Kozlowska, H. & Vidal-Valverde, C. 2008. Effect of fermentation conditions on the antioxidant compounds and antioxidant capacity of Lupinus angustifolius cv. Zapaton. Eur. Food Res. Technol. 227:979-988. https://doi.org/10.1007/s00217-007-0809-3
  14. Frias, J., Miranda, M. L., Doblado, R. & Vidal-Valverde, C. 2005. Effect of germination and fermentation on the antioxidant vitamin content and antioxidant capacity of Lupinus albus L. var. Multolupa. Food Chem. 92:211-220. https://doi.org/10.1016/j.foodchem.2004.06.049
  15. Geisen, R. & Farber, P. 2002. New aspects of fungal starter cultures for fermented foods. Appl Microbiol 2:13-29. https://doi.org/10.1007/0-306-46888-3_1
  16. Guiry, M. D. & Blunden, G. 1991. Seaweed resources in Europe: uses and potential. John Wiley & Sons Ltd., Chichester, West Sussex, 432 pp.
  17. Heo, S. -J., Lee, K. -W., Song, C. B. & Jeon, Y. -J. 2003. Antioxidant activity of enzymatic extracts from brown seaweeds. Algae 18:71-81. https://doi.org/10.4490/ALGAE.2003.18.1.071
  18. Heo, S. -J., Park, E. -J., Lee, K. -W. & Jeon, Y. -J. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 96:1613-1623. https://doi.org/10.1016/j.biortech.2004.07.013
  19. Iontcheva, I., Amar, S., Zawawi, K. H., Kantarci, A. & Van Dyke, T. E. 2004. Role for moesin in lipopolysaccharide-stimulated signal transduction. Infect. Immun. 72:2312-2320. https://doi.org/10.1128/IAI.72.4.2312-2320.2004
  20. Joo, S. S., Won, T. J., Nam, S. Y., Kim, Y. -B., Lee, Y. C., Park, S. -Y., Park, H. Y., Hwang, K. W. & Lee, D. I. 2009. Therapeutic advantages of medicinal herbs fermented with Lactobacillus plantarum, in topical application and its activities on atopic dermatitis. Phytother. Res. 23:913-919. https://doi.org/10.1002/ptr.2758
  21. Jung, J. -S., Shin, J. A., Park, E. -M., Lee, J. -E., Kang, Y. -S., Min, S. -W., Kim, D. -H., Hyun, J. -W., Shin, C. -Y. & Kim, H. -S. 2010. Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide-stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression. J. Neurochem. 115:1668-1680. https://doi.org/10.1111/j.1471-4159.2010.07075.x
  22. Jung, W. -K., Heo, S. -J., Jeon, Y. -J., Lee, C. -M., Park, Y. -M., Byun, H. -G., Choi, Y. -H., Park, S. -G. & Choi, I. -W. 2009. Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. J. Agric. Food Chem. 57:4439-4446. https://doi.org/10.1021/jf9003913
  23. Kim, K. -N., Heo, S. -J., Song, C. B., Lee, J., Heo, M. -S., Yeo, I. -K., Kang, K. A., Hyun, J. W. & Jeon, Y. -J. 2006a. Protective effect of Ecklonia cava enzymatic extracts on hydrogen peroxide-induced cell damage. Process Biochem. 41:2393-2401. https://doi.org/10.1016/j.procbio.2006.06.028
  24. Kim, M. -M., Ta, Q. V., Mendis, E., Rajapakse, N., Jung, W. -K., Byun, H. -G., Jeon, Y. -J. & Kim, S. -K. 2006b. Phlorotannins in Ecklonia cava extract inhibit matrix metalloproteinase activity. Life Sci. 79:1436-1443. https://doi.org/10.1016/j.lfs.2006.04.022
  25. Kuo, C. -F., Chyau, C. -C., Wang, T. -S., Li, C. -R. & Hu, T. -J. 2009. Enhanced antioxidant and anti-inflammatory activities of Monascus pilosus fermented products by addition of turmeric to the medium. J. Agric. Food Chem. 57:11397-11405. https://doi.org/10.1021/jf9027798
  26. Lappas, M., Permezel, M., Georgiou, H. M. & Rice, G. E. 2002. Nuclear factor kappa B regulation of proinflammatory cytokines in human gestational tissues in vitro. Biol. Reprod. 67:668-673. https://doi.org/10.1095/biolreprod67.2.668
  27. Link-Amster, H., Rochat, F., Saudan, K. Y., Mignot, O. & Aeschlimann, J. M. 1994. Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol. Med. Microbiol. 10:55-63. https://doi.org/10.1111/j.1574-695X.1994.tb00011.x
  28. Matsushita, H., Kobayashi, M., Tsukiyama, R., Fujimoto, M., Suzuki, M., Tsujii, K. & Yamamoto, K. 2008. Stimulatory effect of Shoyu polysaccharides from soy sauce on the intestinal immune system. Int. J. Mol. Med. 22:243-247.
  29. Surh, Y. -J., Chun, K. -S., Cha, H. -H., Han, S. S., Keum, Y. -S., Park, K. -K. & Lee, S. S. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480-481:243-268. https://doi.org/10.1016/S0027-5107(01)00183-X
  30. Tzianabos, A. O. 2000. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin. Microbiol. Rev. 13:523-533. https://doi.org/10.1128/CMR.13.4.523-533.2000
  31. Vane, J. R., Mitchell, J. A., Appleton, I., Tomlinson, A., Bishop-Bailey, D., Croxtall, J. & Willoughby, D. A. 1994. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc. Natl. Acad. Sci. U. S. A. 91:2046-2050. https://doi.org/10.1073/pnas.91.6.2046
  32. Xia, D., Lin, Z. B., Ma, L. & Li, Z. L. 1990. Effects of the polysaccharides isolated from mycelium and fermentation fluid of Schizophyllum commune on immune function in mice. Yao Xue Xue Bao 25:161-166.
  33. Yun, H. Y., Dawson, V. L. & Dawson, T. M. 1996. Neurobiology of nitric oxide. Crit. Rev. Neurobiol. 10:291-316. https://doi.org/10.1615/CritRevNeurobiol.v10.i3-4.20

Cited by

  1. Radioprotective effects of a polysaccharide purified from Lactobacillus plantarum-fermented Ishige okamurae against oxidative stress caused by gamma ray-irradiation in zebrafish in vivo model vol.28, 2017, https://doi.org/10.1016/j.jff.2016.11.004
  2. Enzyme-assisted extraction of anticoagulant polysaccharide from Liparis tessellatus eggs vol.74, 2015, https://doi.org/10.1016/j.ijbiomac.2015.01.002
  3. Protective effects of polysaccharides from Psidium guajava leaves against oxidative stresses vol.91, 2016, https://doi.org/10.1016/j.ijbiomac.2016.05.111
  4. In vitro and in vivo antioxidant activities of polysaccharide purified from aloe vera (Aloe barbadensis) gel vol.99, 2014, https://doi.org/10.1016/j.carbpol.2013.07.091
  5. A prebiotic role of Ecklonia cava improves the mortality of Edwardsiella tarda-infected zebrafish models via regulating the growth of lactic acid bacteria and pathogen bacteria vol.54, 2016, https://doi.org/10.1016/j.fsi.2016.05.018
  6. 5β-Hydroxypalisadin B isolated from red alga Laurencia snackeyi attenuates inflammatory response in lipopolysaccharide-stimulated RAW 264.7 macrophages vol.29, pp.4, 2014, https://doi.org/10.4490/algae.2014.29.4.333
  7. Polyphenol-rich fraction from Ecklonia cava (a brown alga) processing by-product reduces LPS-induced inflammation in vitro and in vivo in a zebrafish model vol.29, pp.2, 2014, https://doi.org/10.4490/algae.2014.29.2.165
  8. Radio-protective effect of polysaccharides isolated from Lactobacillus brevis-fermented Ecklonia cava vol.52, 2013, https://doi.org/10.1016/j.ijbiomac.2012.10.004
  9. Antioxidant and anti-inflammatory functionality of ten Sri Lankan seaweed extracts obtained by carbohydrase assisted extraction pp.2092-6456, 2018, https://doi.org/10.1007/s10068-018-0406-1
  10. Fermentation-Derived Bioactive Components from Seaweeds: Functional Properties and Potential Applications vol.27, pp.2, 2018, https://doi.org/10.1080/10498850.2017.1412375
  11. A sulfated polysaccharide of Ecklonia cava inhibits the growth of colon cancer cells by inducing apoptosis vol.14, pp.None, 2011, https://doi.org/10.17179/excli2014-676
  12. Sources, Extraction and Biomedical Properties of Polysaccharides vol.8, pp.8, 2011, https://doi.org/10.3390/foods8080304
  13. Multifunctional role of fucoidan, sulfated polysaccharides in human health and disease: A journey under the sea in pursuit of potent therapeutic agents vol.164, pp.None, 2020, https://doi.org/10.1016/j.ijbiomac.2020.09.019