DOI QR코드

DOI QR Code

Biochemical and Molecular Identification of Antibacterial Lactic Acid Bacteria Isolated from Kimchi

김치에서 항균활성 유산균의 분리 및 동정

  • Kim, Soo-Young (Department of Biological Sciences, Konkuk University) ;
  • Kim, Jong-Doo (Department of Biological Sciences, Konkuk University) ;
  • Son, Ji-Soo (Department of Biological Sciences, Konkuk University) ;
  • Lee, Si-Kyung (Department of Applied Biology and Chemistry, Konkuk University) ;
  • Park, Kab-Joo (Research Institute for Basic Sciences, Konkuk University) ;
  • Park, Myeong-Soo (Department of Hotel Culinary Arts, Anyang Science University)
  • 김수영 (건국대학교 생명과학과) ;
  • 김종두 (건국대학교 생명과학과) ;
  • 손지수 (건국대학교 생명과학과) ;
  • 이시경 (건국대학교 응용생명과학부) ;
  • 박갑주 (건국대학교 기초과학연구소) ;
  • 박명수 (안양과학대학 호텔조리과)
  • Received : 2011.04.07
  • Accepted : 2011.06.06
  • Published : 2011.08.31

Abstract

Total 480 lactic acid-producing bacteria were isolated from five kinds of kimchi, and their antibacterial activity was tested against Salmonella enterica serovar Typhimurium, Bacillus subtilis, and Pseudomonas aeruginosa using an agar diffusion assay. Among them, 340 isolates showed a halo on MRS agar against one or more indicator strains, which were identified using multiplex PCR, an API 50CHL kit, and a 16S rDNA sequence analysis. As a result, 169 Lactobacillus plantarum, 20 Lactobacillus fermentum, two Lactobacillus paracasei ssp. paracasei, two Lactobacillus sp., and 15 Pediococcus sp. were identified. This may be the first report on the isolation of antibacterial Lactobacillus fermentum from kimchi.

항균활성을 나타내는 야생형 유산균을 분리 동정하기 위하여 김치에서 480종의 유산균을 분리하였으며, S. enterica serovar Typhimurium, P. aeruginosa, B. subtilis에 대한 항균활성을 agar diffusion 법을 사용하여 검사하였다. 이들 중 항균활성을 나타내는 균주 340종에 대하여 multiplex PCR과 API 50CHL Kit을 이용한 생화학적 특성검사 및 16S rDNA sequencing을 통해 Lb. plantarum 169균주, Lb. fermentum 20균주, Lb. paracasei spp. paracasei 2균주, Lactobacillus 속 2균주와 Pediococcus 속 15균주를 동정하였다. 이들 균주 중 Lb. fermentum의 경우는 프로바이오틱스로서의 활성이 보고되고 있는 균으로 추가적인 연구가 필요하다고 사료된다.

Keywords

References

  1. Sandine WE, Muralidhara KS, Elliker PR, England DC. Lactic acid bacteria in food and health: A review with special reference to enteropathogenic Escherichia coli as well as certain enteric diseases and their treatment with antibiotics and lactobacilli. J. Milk Food Technol. 35: 691-702 (1972)
  2. Sneath PHA, Mair NS, Sharpe ME, Holt JG. Bergey's Manual of Systematic Bacteriology Vol. 2, Williams and Wilkins, Baltimore, MD, USA. pp. 1209-1234 (1986)
  3. Gilliland SE. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 7: 175-188 (1990) https://doi.org/10.1111/j.1574-6941.1990.tb01683.x
  4. Isolauri E, Joensuu J, Suomalainen H, Luomala M, Vesikari T. Improved immunogenicity of oral D x RRV reassortant rotavirus vaccine by Lactabacillus casei GG. Vaccine 13: 310-312 (1995) https://doi.org/10.1016/0264-410X(95)93319-5
  5. Kitazawa H, Matsumura K, Itoh T, Yamaguch T. Interferon induction in murine peritoneal macrophage by stimulation with Lactobacillas acidophilus. Microbiol. Immunol. 36: 311-315 (1992) https://doi.org/10.1111/j.1348-0421.1992.tb01668.x
  6. Zheng HY, Alcorn TM, Cohen MS. Effects of $H_2O_2$-producing lactobacilli on Neisseria gonorrhoeae growth and catalase activity. J. Infect. Dis. 170: 1209-1215 (1994) https://doi.org/10.1093/infdis/170.5.1209
  7. Fernandes CF, Shahani KM, Amer MA. Therapeutic role of dietary lactobacilli and lactobacillic fermented dairy products. FEMS Microbiol. Lett. 46: 343-356 (1987) https://doi.org/10.1111/j.1574-6968.1987.tb02471.x
  8. Orrhage K, Sillerstrm E, Gustafsson JA, Nord CE, Rafter J. Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat. Res. 311: 239-248 (1994) https://doi.org/10.1016/0027-5107(94)90182-1
  9. Klaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-85 (1993) https://doi.org/10.1111/j.1574-6976.1993.tb00012.x
  10. Kim SH. Screening and characterization of bacteriocin from Lactococcus sp. HY449. Korean J. Dairy Sci. Technol. 12: 1-10 (1995)
  11. Mierau I, Kleerebezem M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biot. 68: 705-717 (2005) https://doi.org/10.1007/s00253-005-0107-6
  12. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for general and molecular bacteriology, American Society for Microbiology, Washington DC, USA. pp. 31-32 (1994)
  13. Cowan ST, Steel KJ. Manual for the identification of medical bacteria. 2nd ed. Cambridge University Press, Cambridge, UK. pp. 147-161 (1974)
  14. MacFaddin JF. Biochemical tests for identification of medical bacteria. 2nd ed. Williams and Wilkins. Baltimore, MD, USA. pp. 345-370 (1980)
  15. Song Y, Kato N, Liu C, Matsumaya Y, Kato H, Watanabe K. Rapid identification of 11 human intestinal Lactobacillus species by multiple PCR assays using group-and species-specific primers derived from 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA. FEMS Microbiol. Lett. 187: 167-173 (2000)
  16. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplication for phylogenetic study. J. Bacteriol. 173: 697- 703 (1991)
  17. Kwon DY, Koo MS, Ryoo CR, Kang CH, Min KH, Kim WJ. Bacteriocin produced by Pediococcus sp. in kimchi and its characteristics. J. Microbiol. Biotechn. 12: 96-105 (2002)
  18. Yan TR, Lee CS. Characterization of a partially purified bacteriocin, Fermenticin B, from Lactobacillus fermentum. Biotechnol. Lett. 19: 741-744 (1997) https://doi.org/10.1023/A:1018327907435
  19. Wells JE. Krause DO, Callaway TR, Russell JB. A bacteriocinmediated antagonism by ruminal lactobacilli against Streptococcus bovis. FEMS Microbiol. Ecol. 22: 237-243 (1997) https://doi.org/10.1111/j.1574-6941.1997.tb00376.x
  20. Fazeli MR, Shahveri AR, Sedaghat B, Jamalifar H, Samadi N. Sourdough-isolated Lactobacillus fermentum as a potent antimould preservative of a traditional Iranian bread. Eur. Food Res. Technol. 218: 554-556 (2004) https://doi.org/10.1007/s00217-004-0898-1
  21. Botina SG, Chervinets IuV, Klimina KM, Koroban NV, Chervinets VM, Gavrilova OA, Lebedev DV, Mironov AIu. Genetic identification of antagonistically active lactobacillus strains isolated from the oral cavity of healthy individuals. Klin. Lab. Diagn. 11: 43-46 (2010)
  22. Todorov SD, Furtado DN, Saad SM, Tome E, Franco BD. Potential beneficial properties of bacteriocin-producing lactic acid bacteria isolated from smoked salmon. J. Appl. Microbiol. 110: 971- 986 (2011) https://doi.org/10.1111/j.1365-2672.2011.04950.x
  23. Pascual LM, Daniele MB, Giordano W, Pájaro MC, Barberis IL. Purification and partial characterization of novel bacteriocin L23 produced by Lactobacillus fermentum L23. Curr. Microbiol. 56: 397-402 (2008) https://doi.org/10.1007/s00284-007-9094-4

Cited by

  1. Establishment of quality criteria and estimate of shelf-life for yogurt beverage and stirred-type yogurt in Korea vol.22, pp.2, 2013, https://doi.org/10.1007/s10068-013-0104-y
  2. Effect of Addition Level of Green Tea Extract on the Lactic Acid Bacteria, Oxidative Stability, and Aroma in Kimchi-fermented Sausage vol.32, pp.4, 2012, https://doi.org/10.5851/kosfa.2012.32.4.467
  3. Four-Week Repeated Oral Toxicity Study of Leuconostoc citreum GR1 in Rats vol.42, pp.4, 2013, https://doi.org/10.3746/jkfn.2013.42.4.600
  4. Identification and Characteristics of Lactic Acid Bacteria Isolated from Shellfishes vol.27, pp.3, 2012, https://doi.org/10.7841/ksbbj.2012.27.3.151
  5. Characteristics of Lotus and Lance Asia bell as Ingredients of Kimchi vol.41, pp.8, 2012, https://doi.org/10.3746/jkfn.2012.41.8.1144
  6. Use of Food-Grade Protective Agents to Improve the Viability of Freeze-Dried Lactic Acid Bacteria vol.46, pp.5, 2014, https://doi.org/10.9721/KJFST.2014.46.5.655
  7. The Anti-inflammatory Effects of Probiotic-produced Exopolysaccharide vol.25, pp.6, 2015, https://doi.org/10.5352/JLS.2015.25.6.709
  8. Antioxidant and Antimicrobial Activities of Curcuma aromatica Salisb. with and without Fermentation vol.32, pp.3, 2016, https://doi.org/10.9724/kfcs.2016.32.3.299
  9. Production and Fermentation Characteristics of Mukeunji with a Mixed Starter vol.42, pp.9, 2013, https://doi.org/10.3746/jkfn.2013.42.9.1467
  10. Antibacterial activity of lactic acid bacteria isolated from traditional fermented foods and development of a starter for fermented milk vol.20, pp.5, 2013, https://doi.org/10.11002/kjfp.2013.20.5.712
  11. Characteristics of Soycurd-forming Lactic Acid Bacteria that Produce Gammaaminobutyric Acid (GABA) from Kimchi vol.24, pp.1, 2014, https://doi.org/10.5352/JLS.2014.24.1.46
  12. Diversity and community analysis of fermenting bacteria isolated from eight major Korean fermented foods using arbitrary-primed PCR and 16S rRNA gene sequencing vol.58, pp.3, 2015, https://doi.org/10.1007/s13765-015-0062-6