• Title/Summary/Keyword: LPG facility

Search Result 2, Processing Time 0.031 seconds

Gas Fire Accident Cause Survey Study (가스화재사고 원인조사 연구(LP가스를 중심으로))

  • Kim, Young-Cheol;Cha, Jong-Ho
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The purpose of this paper is to report gas fire accident based on classification of the major gas fire causes (including handling mistakes, inferior goods, etc.), fire classifications (fire, explosion, leakages, etc.), damage levels(1st, 2nd, 3rd, 4th grade levels), casualties (death, serious wound, slight injury) since gas fire has been generated according to growth of gaseous fuel consumption on home and enterprises with various accident causes. Among gaseous fuels, LPG facility can be c1assified as gas container, pressure regulator, gas hose, interim valve, combustion port. Any fire or any explosion can be caused from handling mistakes, inferior goods on each parts as stated above. Exact gas fire causes shall be identified based on previous case studies on similar fires with consideration of lesson learns.

  • PDF

Analysis of LPG Facility Siting Considering BLEVE (BLEVE를 고려한 LPG 시설 Siting 분석)

  • Kim, Taebeom;Lee, Kyounglim;Lee, Juhee;Jung, Seungho;Lee, Kunmo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.26-32
    • /
    • 2016
  • In previous studies on LPG siting in Korea, the scope have not included the probability of the secondary events of adjacent LPG tanks or structures from an explosion source. Therefore, it is essential to first identify the phenomenon which can be caused by BLEVE and then, properly assess their effects to each target including secondary event. In this study, we calculated the effects from a potential BLEVE of 15 ton LPG tank causing damages of storage tanks (LPG), structures and human using Phast ver. 6.7 and then suggested three risk zones (Zone I, II, III) assuming the consequences such as overpressure, heat radiation and missile effect by fragments. Zone I and II are divided at the line of 50% occurrence of the secondary event. Zone II and III are divided by Individual Risk(IR). The zone approach in this study can be used for more effective and safer Land Use Planning (LUP) for the future.