• Title/Summary/Keyword: LMI(Linear Matrix Inequality)

Search Result 351, Processing Time 0.031 seconds

Structured Controller Synthesis Using a Penalized LMI Method (페널티화된 LMI를 이용한 구조적 제약이 있는 제어기 설계)

  • Kim Seog-Joo;KWon Soonman Kwon;Cheon Jong-Min;Moon Young-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.656-661
    • /
    • 2005
  • This paper is concerned with an iterative linear matrix inequality (LMI) approach to the design of a structurally constrained output feedback controller such as decentralized control. The structured synthesis is formulated as a novel rank-constrained LMI optimization problem, where the controller parameters are explicitly described so as to impose structural constraints on the parameter matrices. An iterative penalty method is applied to solve the rank-constrained LMI problem. Numerical experiments are performed to illustrate the effectiveness of the proposed method.

Reliable $H_\infty$ control for descriptor systems with actuator failures (구동기 고장을 가지는 특이시스템의 신뢰 $H_\infty$ 제어)

  • Kim, Jong-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.135-138
    • /
    • 2003
  • In this paper, we provide a reliable few controller design method for descriptor systems satisfying asymptotic stability with $H_\infty$ norm bound and all actuator failures occurred within the pre-specified subset. The proper condition for the existence of a reliable $H_\infty$ controller and the controller design method are proposed by linear matrix inequality(LMI), Schur complements, and singular value decomposition. All solutions can be obtained simultaneously because the presented sufficient condition can be expressed as an LMI form.

  • PDF

Design of the Well-Conditioned Observer - A Linear Matrix Inequality Approach - (Well-Conditioned 관측기 설계 - A Linear Matrix Inequality Approach -)

  • Jung, Jong-Chul;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.503-510
    • /
    • 2004
  • In this paper, the well-conditioned observer for a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic uncertainties such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic uncertainties such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_{2}$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic uncertainties. In stochastic viewpoints, the estimation variance represents the robustness to the stochastic uncertainties and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.

Design of a reduced-order $H_{\infty}$ controller using an LMI method (LMI를 이용한 축소차수 $H_{\infty}$ 제어기 설계)

  • Kim, Seog-Joo;Chung, Soon-Hyun;Cheon, Jong-Min;Kim, Chun-Kyung;Lee, Jong-Moo;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.729-731
    • /
    • 2004
  • This paper deals with the design of a low order $H_{\infty}$ controller by using an iterative linear matrix inequality (LMI) method. The low order $H_{\infty}$ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, a linear penalty function is incorporated into the objective function so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Numerical experiments show the effectiveness of the proposed algorithm.

  • PDF

Simultaneous Stabilization Via Static Ouput Feedback Using an LMI Method (LMI를 이용한 정적출력궤환 동시안정화 제어기 설계)

  • Cheon, Jong-Min;Lee, Jong-Moo;Kwon, Soon-Man;Moon, Young-Hyun;Kim, Seog-Joo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.5
    • /
    • pp.226-228
    • /
    • 2006
  • This paper deals with a linear matrix inequality (LMI) approach to the design of a static output feedback controller that simultaneously stabilizes a finite collection of linear time-invariant plants. Simultaneous stabilization by static ouput feedback is represented in terms of LMIs with a rank condition. An iterative penalty method is proposed to solve the rank-constrained LMI problem. Numerical experiments show the effectiveness of the proposed algorithm.

Robust Discretization of LTI Systems with Polytopic Uncertainties and Aperiodic Sampling

  • Lee, Dong Hwan;Park, Jin Bae;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1255-1263
    • /
    • 2015
  • In the previous work, the authors studied the problem of robust discretization of linear time-invariant systems with polytopic uncertainties, where linear matrix inequality (LMI) conditions were developed to find an approximate discrete-time (DT) model of a continuous-time (CT) system with uncertainties in polytopic domain. The system matrices of obtained DT model preserved the polytopic structures of the original CT system. In this paper, we extend the previous approach to solve the problem of robust discretization of polytopic uncertain systems with aperiodic sampling. In contrast with the previous work, the sampling period is assumed to be unknown, time-varying, but contained within a known interval. The solution procedures are presented in terms of unidimensional optimizations subject to LMI constraints which are numerically tractable via LMI solvers. Finally, an example is given to show the validity of the proposed techniques.

LMI-based Design of Integral Sliding Mode Controllers for Polytopic Models (폴리토픽 모델을 갖는 시스템을 위한 적분 슬라이딩 모드 제어기의 LMI 기반 설계)

  • Choi, Han-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.44-48
    • /
    • 2010
  • This paper presents an LMI-based method to design an integral sliding mode controller for an uncertain system with a polytopic model. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. Using LMIs we derive an existence condition of a sliding surface. And we give a switching feedback control law.

Design of a Low-order Pole Placement Power System Stabilizer Using Simultaneous Stabilization (동시안정화를 이용한 저차원 극배치 전력계통안정화장치 설계)

  • Kim, Seog-Joo;Lee, Jong-Moo;Kwon, Soon-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1708-1712
    • /
    • 2008
  • This paper describes a linear matrix inequality (LMI) approach to the design of robust low-order power system stabilizers (PSSs), which are used to damp out local-mode oscillations of synchronous generators. The performance of a PSS is expressed as the location of the closed-loop poles, and a single fixed-gain pole-placement controller is synthesized for a wide range of operating conditions. The synthesis results in simultaneous regional pole-placement stabilization. and is formulated as an LMI feasibility problem with a rank condition. A penalty method is applied to solve the rank-constrained LMI problem. Numerical experiments with a single-machine connected to an infinite bus system were performed to demonstrate the proposed method.

Robust Controller Design for a Stabilized Head Mirror

  • Keh, Joong-Eup;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.78-86
    • /
    • 2002
  • In this paper, LMI (Linear Matrix Inequality) based on H$\_$$\infty$/ controller for a lire of sight (LOS) stabilization system. It shows that the proposed controller has more excellent stabilization performance than that of the conventional PI-Lead controller. An H$\_$$\infty$/ control has been also applied to the system for reducing modeling errors and the settling time of the system. The LMI-based H$\_$$\infty$/ controller design is more practical in view of reducing a run-time than Riccati-based H$\_$$\infty$/ controller. This H$\_$$\infty$/ controller is available not only to decrease the gain in PI-Lead control, but also to compensate the identifications for the various uncertain parameters. Therefore, this paper, shows that the proposed LMI-based H$\_$$\infty$/ controller had good disturbance attenuation and reference input tracking performance compared with the control performance of the conventional controller under any real disturbances.

Design of a Low-Order H Controller Using an Iterative LMI Method (반복 선형행렬부등식을 이용한 저차원 H 제어기 설계)

  • Kim Chun-Kyung;Kim Kook-Hun;Moon Young-Hyun;Kim Seog-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.279-283
    • /
    • 2005
  • This paper deals with the design of a low-order H/sub ∞/ controller by using an iterative linear matrix inequality (LMI) method. The low-order H/sub ∞/ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, the recently developed penalty function method is applied. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. Numerical experiments showed the effectiveness of the proposed algorithm.