• Title/Summary/Keyword: LDA토픽모델링

Search Result 236, Processing Time 0.025 seconds

News Coverage on COVID-19 and Partisan Agenda-setting: An Analysis of Topic Modeling Results and Survey Data (코로나19 보도와 정파적 의제설정: 토픽모델링과 설문조사 연결분석)

  • Cha, Chae Young;Wang, Yu-Hsiang;Lee, Jong Hyuk
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.86-98
    • /
    • 2022
  • This study explored the agenda of conservative and liberal media in reporting COVID-19, and observed the effects of each media's partisan agenda-setting on the public with the same political orientation. To this end, researchers collected 5,286 articles on COVID-19 from five newspapers, and analyzed the survey data of 1,067 respondents. Next, the researchers extracted main agenda using LDA topic modeling and analyzed the correlation between newspapers' agenda and survey respondents' agenda. As results, 15 topics such as infection, vaccine, and economic crisis appeared as the media agenda, and the difference in major agenda between conservative and liberal media was found. On the other hand, the conservative media exerted an agenda-setting influence not only on the conservatives but also on the liberals, but the liberal media did not have a significant influence on the liberals. This study contributes to the methodological expansion of agenda-setting research by introducing a new way to confirm the effectiveness of agenda-setting by combining topic modeling and survey.

An Analysis of Research Trends on Basic Academic Abilities in Mathematics with Frequency Analysis and Topic Modeling (빈도 분석 및 토픽모델링을 활용한 수학 교과에서 기초학력 관련 연구 동향 분석)

  • Cho, Mi Kyung
    • Communications of Mathematical Education
    • /
    • v.37 no.4
    • /
    • pp.615-633
    • /
    • 2023
  • This study analyzed Korean studies up to August 2023 to suggest the direction of future research on basic academic abilities in mathematics. For this purpose, frequency analysis and LDA-based topic modeling were conducted on the Korean abstracts of 197 domestic studies. The results showed that, first, 'academic achievement', 'impact', 'effect', and 'factors' were all ranked at the top of the TFs and TF-IDFs. Second, as a result of LDA-based topic modeling, five topics were identified: causes of basic academic abilities deficiency, learning status of math underachievers, teacher expertise in teaching math underachievers, supporting programs for math underachievers, and results of National Assessment of Educational Achievement. As a direction for future research, this study suggests focusing on the growth of math underachievers, systematizing the programs provided to students who need learning support in mathematics, and developing teacher expertise in teaching math underachievers.

A Reply Graph-based Social Mining Method with Topic Modeling (토픽 모델링을 이용한 댓글 그래프 기반 소셜 마이닝 기법)

  • Lee, Sang Yeon;Lee, Keon Myung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.640-645
    • /
    • 2014
  • Many people use social network services as to communicate, to share an information and to build social relationships between others on the Internet. Twitter is such a representative service, where millions of tweets are posted a day and a huge amount of data collection has been being accumulated. Social mining that extracts the meaningful information from the massive data has been intensively studied. Typically, Twitter easily can deliver and retweet the contents using the following-follower relationships. Topic modeling in tweet data is a good tool for issue tracking in social media. To overcome the restrictions of short contents in tweets, we introduce a notion of reply graph which is constructed as a graph structure of which nodes correspond to users and of which edges correspond to existence of reply and retweet messages between the users. The LDA topic model, which is a typical method of topic modeling, is ineffective for short textual data. This paper introduces a topic modeling method that uses reply graph to reduce the number of short documents and to improve the quality of mining results. The proposed model uses the LDA model as the topic modeling framework for tweet issue tracking. Some experimental results of the proposed method are presented for a collection of Twitter data of 7 days.

An Examination of the Topics and Changes in the Research Papers Published in the Journal of Korean Elementary Science Education Using Latent Dirichlet Allocation for the Topic Modeling Analysis (잠재 디리클레 할당(LDA) 기반의 토픽모델링 분석을 통한 '초등과학교육' 학술지 연구논문의 주제 및 변화)

  • Chang, Jina;Na, Jiyeon
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.356-372
    • /
    • 2022
  • This study examined the topics that have appeared in the "Journal of Korean Elementary Science Education" over the past 50 years to identify the changes that have occurred in the Korean Society of Elementary Science Education. Latent Dirichlet allocation topic modeling was applied to 1,065 English abstracts from the first issue (1983) to 2021, from which 14 main topics were extracted. The meaning of each topic was then analyzed from its keywords and documents. Subsequently, to elucidate the topic trends, the topics' increase or decrease every three years was statistically examined through linear regression analysis. Based on the results, implications for developing and supporting elementary science education research in the future were discussed.

Exploring Key Topics and Trends of Government-sponsored R&D Projects in Future Automotive Fields: LDA Topic Modeling Approach (미래 자동차 분야 국가연구개발사업의 주요 연구 토픽과 투자 동향 분석: LDA 토픽모델링을 중심으로)

  • Ma Hyoung Ryul;Lee Cheol-Ju
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.31-48
    • /
    • 2024
  • The domestic automotive industry must consider a strategic shift from traditional automotive component manufacturing to align with future trends such as connectivity, autonomous driving, sharing, and electrification. This research conducted topic modeling on R&D projects in the future automotive sector funded by the Ministry of Trade, Industry, and Energy from 2013 to 2021. We found that topics such as sensors, communication, driver assistance technology, and battery and power technology remained consistently prominent throughout the entire period. Conversely, topics like high-strength lightweight chassis were observed only in the first period, while topics like AI, big data, and hydrogen fuel cells gained increasing importance in the second and third periods. Furthermore, this research analyzed the areas of concentrated investment for each period based on topic-specific government investment amounts and investment growth rates.

Research Trends in Korean Healing Facilities and Healing Programs Using LDA Topic Modeling (LDA 토픽모델링을 활용한 국내 치유시설과 치유프로그램 연구 동향)

  • Lee, Ju-Hong;Lee, Kyung-Jin;Sung, Jung-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.95-106
    • /
    • 2023
  • Korean healing research has developed over the past 20 years along with the growing social interest in healing. The field of healing research is diverse and includes legislated natural-based healing. In this study, abstracts of 2,202 academic journals, master's, and doctoral dissertations published in KCI and RISS were collected and analyzed. As for the research method, LDA topic modeling used to classify research topics, and time-series publication trends were examined. As a result of the study, it identified that the topic of Korean healing research was connected with 5 types and 4 mediators. The five were "Healing Tourism," "Mind and Art Healing," "Forest Therapy," "Healing Space," and "Youth Restoration and Healing," and the four mediators were "Forest," "Nature," "Culture", and "Education". In addition, only legalized healing studies extracted from Korean healing research and the topics were analyzed. As a result, legalized healing research classified into four. The four types were "Healing Spatial Environment Plan", "Healing Therapy Experiment", "Agricultural Education Experiential Healing", and "Healing Tourism Factor". Forest Therapy, which has the largest amount of research in legalized healing, Agro Healing and Garden Healing which operate similar programs through plants, and Marine Healing using marine resources also analyzed. As a result, topics that show the unique characteristics of individual healing studies and topics that are considered universal in all healing studies derived. This study is significant in that it identified the overall trend of research on Korean healing facilities and programs by utilizing LDA topic modeling.

Combining Ego-centric Network Analysis and Dynamic Citation Network Analysis to Topic Modeling for Characterizing Research Trends (자아 중심 네트워크 분석과 동적 인용 네트워크를 활용한 토픽모델링 기반 연구동향 분석에 관한 연구)

  • Yu, So-Young
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.1
    • /
    • pp.153-169
    • /
    • 2015
  • The combined approach of using ego-centric network analysis and dynamic citation network analysis for refining the result of LDA-based topic modeling was suggested and examined in this study. Tow datasets were constructed by collecting Web of Science bibliographic records of White LED and topic modeling was performed by setting a different number of topics on each dataset. The multi-assigned top keywords of each topic were re-assigned to one specific topic by applying an ego-centric network analysis algorithm. It was found that the topical cohesion of the result of topic modeling with the number of topic corresponding to the lowest value of perplexity to the dataset extracted by SPLC network analysis was the strongest with the best values of internal clustering evaluation indices. Furthermore, it demonstrates the possibility of developing the suggested approach as a method of multi-faceted research trend detection.

Data Analysis of Dropouts of University Students Using Topic Modeling (토픽모델링을 활용한 대학생의 중도탈락 데이터 분석)

  • Jeong, Do-Heon;Park, Ju-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.88-95
    • /
    • 2021
  • This study aims to provide implications for establishing support policies for students by empirically analyzing data on university students dropouts. To this end, data of students enrolled in D University after 2017 were sampled and collected. The collected data was analyzed using topic modeling(LDA: Latent Dirichlet Allocation) technique, which is a probabilistic model based on text mining. As a result of the study, it was found that topics that were characteristic of dropout students were found, and the classification performance between groups through topics was also excellent. Based on these results, a specific educational support system was proposed to prevent dropout of university students. This study is meaningful in that it shows the use of text mining techniques in the education field and suggests an education policy based on data analysis.

Differences and Multi-dimensionality of the Perception of Career Success among Korean Employees: A Topic Modeling Approach (기업근로자 경력성공 인식의 다차원성과 차이: 토픽모델링의 적용)

  • Lee, Jaeeun;Chae, Chungil
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.6
    • /
    • pp.58-71
    • /
    • 2019
  • The purpose of this study is to explore the multi-dimensionality and the differences of the career success that is revealed by the employee's perception. In order to fulfill the research purpose, LDA topic modeling has applied to extract latent topics of career success from 126 Korean employees' open-end survey questionnaires. The extracted latent topics are social recognition, continuing service within an organization, expertise, financial rewards, and pursuing personal meaning. The occurrence probability of each topic was different by individual characteristics such as gender, education, position. Study findings showed there is multi-dimensionality in career success, and there are differences of topic occurrence probability by demographic characteristics. Additionally, this study showed how to apply the recently developed machine learning approach in order to reduce the researcher's bias by adapting the LDA topic modeling to the qualitative open-ended survey data.

A Study on Mapping Users' Topic Interest for Question Routing for Community-based Q&A Service (커뮤니티 기반 Q&A서비스에서의 질의 할당을 위한 이용자의 관심 토픽 분석에 관한 연구)

  • Park, Jong Do
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.3
    • /
    • pp.397-412
    • /
    • 2015
  • The main goal of this study is to investigate how to route a question to some relevant users who have interest in the topic of the question based on users' topic interest. In order to assess users' topic interest, archived question-answer pairs in the community were used to identify latent topics in the chosen categories using LDA. Then, these topic models were used to identify users' topic interest. Furthermore, the topics of newly submitted questions were analyzed using the topic models in order to recommend relevant answerers to the question. This study introduces the process of topic modeling to investigate relevant users based on their topic interest.