This study explored the agenda of conservative and liberal media in reporting COVID-19, and observed the effects of each media's partisan agenda-setting on the public with the same political orientation. To this end, researchers collected 5,286 articles on COVID-19 from five newspapers, and analyzed the survey data of 1,067 respondents. Next, the researchers extracted main agenda using LDA topic modeling and analyzed the correlation between newspapers' agenda and survey respondents' agenda. As results, 15 topics such as infection, vaccine, and economic crisis appeared as the media agenda, and the difference in major agenda between conservative and liberal media was found. On the other hand, the conservative media exerted an agenda-setting influence not only on the conservatives but also on the liberals, but the liberal media did not have a significant influence on the liberals. This study contributes to the methodological expansion of agenda-setting research by introducing a new way to confirm the effectiveness of agenda-setting by combining topic modeling and survey.
This study analyzed Korean studies up to August 2023 to suggest the direction of future research on basic academic abilities in mathematics. For this purpose, frequency analysis and LDA-based topic modeling were conducted on the Korean abstracts of 197 domestic studies. The results showed that, first, 'academic achievement', 'impact', 'effect', and 'factors' were all ranked at the top of the TFs and TF-IDFs. Second, as a result of LDA-based topic modeling, five topics were identified: causes of basic academic abilities deficiency, learning status of math underachievers, teacher expertise in teaching math underachievers, supporting programs for math underachievers, and results of National Assessment of Educational Achievement. As a direction for future research, this study suggests focusing on the growth of math underachievers, systematizing the programs provided to students who need learning support in mathematics, and developing teacher expertise in teaching math underachievers.
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.6
/
pp.640-645
/
2014
Many people use social network services as to communicate, to share an information and to build social relationships between others on the Internet. Twitter is such a representative service, where millions of tweets are posted a day and a huge amount of data collection has been being accumulated. Social mining that extracts the meaningful information from the massive data has been intensively studied. Typically, Twitter easily can deliver and retweet the contents using the following-follower relationships. Topic modeling in tweet data is a good tool for issue tracking in social media. To overcome the restrictions of short contents in tweets, we introduce a notion of reply graph which is constructed as a graph structure of which nodes correspond to users and of which edges correspond to existence of reply and retweet messages between the users. The LDA topic model, which is a typical method of topic modeling, is ineffective for short textual data. This paper introduces a topic modeling method that uses reply graph to reduce the number of short documents and to improve the quality of mining results. The proposed model uses the LDA model as the topic modeling framework for tweet issue tracking. Some experimental results of the proposed method are presented for a collection of Twitter data of 7 days.
This study examined the topics that have appeared in the "Journal of Korean Elementary Science Education" over the past 50 years to identify the changes that have occurred in the Korean Society of Elementary Science Education. Latent Dirichlet allocation topic modeling was applied to 1,065 English abstracts from the first issue (1983) to 2021, from which 14 main topics were extracted. The meaning of each topic was then analyzed from its keywords and documents. Subsequently, to elucidate the topic trends, the topics' increase or decrease every three years was statistically examined through linear regression analysis. Based on the results, implications for developing and supporting elementary science education research in the future were discussed.
Journal of Korea Society of Industrial Information Systems
/
v.29
no.1
/
pp.31-48
/
2024
The domestic automotive industry must consider a strategic shift from traditional automotive component manufacturing to align with future trends such as connectivity, autonomous driving, sharing, and electrification. This research conducted topic modeling on R&D projects in the future automotive sector funded by the Ministry of Trade, Industry, and Energy from 2013 to 2021. We found that topics such as sensors, communication, driver assistance technology, and battery and power technology remained consistently prominent throughout the entire period. Conversely, topics like high-strength lightweight chassis were observed only in the first period, while topics like AI, big data, and hydrogen fuel cells gained increasing importance in the second and third periods. Furthermore, this research analyzed the areas of concentrated investment for each period based on topic-specific government investment amounts and investment growth rates.
Journal of the Korean Institute of Landscape Architecture
/
v.51
no.3
/
pp.95-106
/
2023
Korean healing research has developed over the past 20 years along with the growing social interest in healing. The field of healing research is diverse and includes legislated natural-based healing. In this study, abstracts of 2,202 academic journals, master's, and doctoral dissertations published in KCI and RISS were collected and analyzed. As for the research method, LDA topic modeling used to classify research topics, and time-series publication trends were examined. As a result of the study, it identified that the topic of Korean healing research was connected with 5 types and 4 mediators. The five were "Healing Tourism," "Mind and Art Healing," "Forest Therapy," "Healing Space," and "Youth Restoration and Healing," and the four mediators were "Forest," "Nature," "Culture", and "Education". In addition, only legalized healing studies extracted from Korean healing research and the topics were analyzed. As a result, legalized healing research classified into four. The four types were "Healing Spatial Environment Plan", "Healing Therapy Experiment", "Agricultural Education Experiential Healing", and "Healing Tourism Factor". Forest Therapy, which has the largest amount of research in legalized healing, Agro Healing and Garden Healing which operate similar programs through plants, and Marine Healing using marine resources also analyzed. As a result, topics that show the unique characteristics of individual healing studies and topics that are considered universal in all healing studies derived. This study is significant in that it identified the overall trend of research on Korean healing facilities and programs by utilizing LDA topic modeling.
Journal of the Korean Society for information Management
/
v.32
no.1
/
pp.153-169
/
2015
The combined approach of using ego-centric network analysis and dynamic citation network analysis for refining the result of LDA-based topic modeling was suggested and examined in this study. Tow datasets were constructed by collecting Web of Science bibliographic records of White LED and topic modeling was performed by setting a different number of topics on each dataset. The multi-assigned top keywords of each topic were re-assigned to one specific topic by applying an ego-centric network analysis algorithm. It was found that the topical cohesion of the result of topic modeling with the number of topic corresponding to the lowest value of perplexity to the dataset extracted by SPLC network analysis was the strongest with the best values of internal clustering evaluation indices. Furthermore, it demonstrates the possibility of developing the suggested approach as a method of multi-faceted research trend detection.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.1
/
pp.88-95
/
2021
This study aims to provide implications for establishing support policies for students by empirically analyzing data on university students dropouts. To this end, data of students enrolled in D University after 2017 were sampled and collected. The collected data was analyzed using topic modeling(LDA: Latent Dirichlet Allocation) technique, which is a probabilistic model based on text mining. As a result of the study, it was found that topics that were characteristic of dropout students were found, and the classification performance between groups through topics was also excellent. Based on these results, a specific educational support system was proposed to prevent dropout of university students. This study is meaningful in that it shows the use of text mining techniques in the education field and suggests an education policy based on data analysis.
The purpose of this study is to explore the multi-dimensionality and the differences of the career success that is revealed by the employee's perception. In order to fulfill the research purpose, LDA topic modeling has applied to extract latent topics of career success from 126 Korean employees' open-end survey questionnaires. The extracted latent topics are social recognition, continuing service within an organization, expertise, financial rewards, and pursuing personal meaning. The occurrence probability of each topic was different by individual characteristics such as gender, education, position. Study findings showed there is multi-dimensionality in career success, and there are differences of topic occurrence probability by demographic characteristics. Additionally, this study showed how to apply the recently developed machine learning approach in order to reduce the researcher's bias by adapting the LDA topic modeling to the qualitative open-ended survey data.
Journal of the Korean Society for information Management
/
v.32
no.3
/
pp.397-412
/
2015
The main goal of this study is to investigate how to route a question to some relevant users who have interest in the topic of the question based on users' topic interest. In order to assess users' topic interest, archived question-answer pairs in the community were used to identify latent topics in the chosen categories using LDA. Then, these topic models were used to identify users' topic interest. Furthermore, the topics of newly submitted questions were analyzed using the topic models in order to recommend relevant answerers to the question. This study introduces the process of topic modeling to investigate relevant users based on their topic interest.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.