DOI QR코드

DOI QR Code

Exploring Key Topics and Trends of Government-sponsored R&D Projects in Future Automotive Fields: LDA Topic Modeling Approach

미래 자동차 분야 국가연구개발사업의 주요 연구 토픽과 투자 동향 분석: LDA 토픽모델링을 중심으로

  • 마형렬 (산업통상자원 R&D전략기획단) ;
  • 이철주 (한국산업기술기획평가원)
  • Received : 2023.11.29
  • Accepted : 2024.01.16
  • Published : 2024.02.29

Abstract

The domestic automotive industry must consider a strategic shift from traditional automotive component manufacturing to align with future trends such as connectivity, autonomous driving, sharing, and electrification. This research conducted topic modeling on R&D projects in the future automotive sector funded by the Ministry of Trade, Industry, and Energy from 2013 to 2021. We found that topics such as sensors, communication, driver assistance technology, and battery and power technology remained consistently prominent throughout the entire period. Conversely, topics like high-strength lightweight chassis were observed only in the first period, while topics like AI, big data, and hydrogen fuel cells gained increasing importance in the second and third periods. Furthermore, this research analyzed the areas of concentrated investment for each period based on topic-specific government investment amounts and investment growth rates.

글로벌 자동차 산업은 연결, 자율주행, 공유, 전동화 등의 주요 방향 아래 지속적으로 발전하고 있으며, 국내 자동차 산업 또한 기존의 전통적인 자동차 부품 제조로부터 미래 트렌드에 부합하는 전략적인 업의 전환을 꾀하고 있다. 본 연구에서는 2013년부터 2021년까지 산업통상자원부에서 지원한 미래 자동차 분야 연구개발 과제를 대상으로 토픽 모델링을 수행하였다. 해당 기간을 3개 기간으로 구분하여 주요 토픽의 변화를 분석하였다. 센서와 통신, 운전자 보조 기술, 배터리 및 전력 기술은 전 기간 동안 지속적인 주요 토픽으로 나타났으며, 고강도 경량 차체와 같은 주제는 1기에서만 관찰되었다. 한편, AI, 빅데이터, 수소 연료전지와 같은 주제는 2기와 3기에 점점 더 중요한 토픽으로 부상하였다. 또한, 토픽별 정부 투자액과 투자 증가율을 기준으로 각 기수별 집중 투자 분야를 분석하였다. 이러한 연구 결과는 향후 자동차 분야의 정책 수립 및 연구개발 전략 마련 시 기초 자료로 활용될 것으로 예상되며, 증거 기반의 정책 수립과 결정에 기여할 것으로 기대된다.

Keywords

References

  1. Blei, D., Ng, A. and Jordan, M. (2003). Latent Dirichlet Allocation, The Journal of Machine Learning Research, Vol. 3, pp. 993-1022.
  2. Choi, D., Song, B., Park, D. and Lee, S. (2022). Keyword trends analysis related to the aviation industry during the Covid-19 period using text mining, Journal of the Korea Industrial Information Systems Research, Vol. 27, No. 2, pp. 115-128.
  3. Chung, M. and Lee, J. (2018). Systemic Analysis of Research Activities and Trends Related to Artificial Intelligence(A.I.) Technology Based on Latent Dirichlet Allocation (LDA) Model, Journal of the Korea Industrial Information Systems Research, Vol. 23, No. 3, pp. 87-95.
  4. Deerwester, S., Dumais, S., Furnas, G., Landauer, T. and Harshman, R. (1990). Indexing by latent semantic analysis, Journal of the American Society for Information Science, Vol. 41, No. 6, pp. 391-407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
  5. Hofmann T. (1999). Probabilistic latent semantic indexing, In Proceedings of the 22nd annual international ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, pp 50-57.
  6. Hong, T., Niu, H., Ren, G. and Park, J. (2018). Multi-Topic Sentiment Analysis using LDA for Online Review, The Journal of Information Systems, Vol. 27, No. 1, pp. 89-110.
  7. Jo, H., Kim, J. and Lee, B. (2019). A Study on Research Trends of Blockchain Using LDA Topic Modeling : Focusing on United States, China, and South Korea, Journal of Digital Contents Society, Vol. 20, No. 7, pp. 1453-1460. https://doi.org/10.9728/dcs.2019.20.7.1453
  8. Kim, C., Choi, S. and Kwahk, K. (2017). Investigation of Research Trends in Information Systems Domain Using Topic Modeling and Time Series Regression Analysis, Journal of Digital Contents Society, Vol. 18, No. 6, pp. 1143-1150. https://doi.org/10.9728/DCS.2017.18.6.1143
  9. Kim, K. (2021). A Study on the Analysis of R&D Trends and the Development of Logic Models for Autonomous Vehicles, Journal of Digital Convergence, Vol. 19, No. 5, pp. 31-39.
  10. Kim, S., Park, D. and Kim, B. (2021). Analysis of Airbnb customers' reviews using Topic Modeling: focusing on the difference in topics before and after the COVID-19 Pendemic, The Journal of Internet Electronic Commerce Research, Vol. 21, No. 4, pp. 115-130.
  11. KIET. (2017). The Influence and Challenges of the Fourth Industrial Revolution on Korean Major Industries, Korea Institute for Industrial Economics and Trade.
  12. KEIT. (2022). 2021 Industrial technology level survey report, Korea Planning & Evaluation of Industrial Technology.
  13. Lim, C., Ha, J., Cho, K., and Ha, H. (2021). Analyzing Customers' Perception of Service and Market Trends in Fresh Food E-commerce: Application of Text Mining Techniques, The Journal of Internet Electronic Commerce Research, Vol. 21, No. 4, pp. 169-182.
  14. Ma, H., Lee, C. and Oh, D. (2022). Identification of R&D Paradox after the Global Financial Crisis: Korean Case Focusing on the Smart Convergence and Conventional Industries, Science, Technology and Society, 27(2), 213-232. https://doi.org/10.1177/09717218221075145
  15. MOTIE. (2019). 2019 - 2021 Industrial Technology R&D Investment Strategy, Ministry of Trade, Industry and Energy.
  16. Nam, D. and Choi, G. (2018). Technology Trend Analysis in the Automotive Semiconductor Industry using Topic Model and Patent Analysis, Journal of Korea Technology Innovation Society, Vol. 21, No. 3, pp. 1155-1178.
  17. Park, J., Hong, S. and Kim, J. (2017). A Study on Science Technology Trend and Prediction Using Topic Modeling, Journal of the Korea Industrial Information Systems Research, Vol. 22, No. 4, pp. 19-28.
  18. Park, K. and Lee, C. (2019). A Study on the Research Trends for Smart City using Topic Modeling, Journal of Internet Computing and Services, Vol. 20, No. 3, pp. 119-128.