• 제목/요약/키워드: Korean numbers

검색결과 9,936건 처리시간 0.045초

VARIOUS PROPERTIES OF HIGH-ORDER (p, q)-POLY-TANGENT POLYNOMIALS AND THE PHENOMENA OF THEIR ROOTS

  • JUNG YOOG KANG
    • Journal of applied mathematics & informatics
    • /
    • 제42권2호
    • /
    • pp.457-469
    • /
    • 2024
  • In this paper, we construct higher-order (p, q)-poly-tangent numbers and polynomials and give several properties, including addition formula and multiplication formula. Finally, we explore the distribution of roots of higher-order (p, q)-poly-tangent polynomials.

양의 비율로서 실수 (Real Numbers as Ratios of Quantities)

  • 박준용
    • 논리연구
    • /
    • 제14권3호
    • /
    • pp.137-176
    • /
    • 2011
  • 밥 헤일은 최근 추상화 원리에 기초한 실수이론을 제안하였다. 그 이론에서 실수는 양의 비율로 간주되고, 양의 비율의 동일성은 유독소스에게서 유래된 비율 원리에 의해 설명된다. 그가 실수를 양의 비율로 정의하는 이유는 산수 개념의 정의는 그런 개념의 보편적 적용 가능성에 알맞게 이루어져야 한다는 프레게의 요구를 그가 만족시키려 하기 때문이다. 이 글에서 나는 실수적용에 대한 헤일의 설명이 왜 프레게 제한을 만족시키기 힘든지 보이고, 대안이 될 만한 설명을 제안한다. 나는 먼저 양 개념에 대한 그의 설명과 양의 영역에 관한 그의 약정 사이에 어떤 간격이 있고, 이 때문에 실수 적용에 대한 그의 설명에 어려움이 생긴다는 것을 보인다. 다음으로 나는 어떤 종류의 양들에나 적용될 수 있는 새로운 비율 원리를 제안하고, 그 원리는 양의 비율로서 실수들이 보편적으로 적용가능한 이유를 적합하게 설명해 준다고 주장한다. 마지막으로 나는 양의 측정 절차를 검토한 후, 실수의 성공적 적용을 위해 우리가 전제해야 할 원리들을 제시한다.

  • PDF

수직 등온 평행 평판에서 상호작용 유동이 대류 열전달에 미치는 영향 (The Effect of the Interactive Flow on Convective Heat Transfer from two Vertical Isothermal Parallel Plates)

  • 김상영;정한식;권순석
    • 대한기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.765-774
    • /
    • 1992
  • 본 연구에서는 수직 등온 평행평판의 혼합대류 열전달에 대하여 두 평판의 길 이가 다른 경우를 고찰하고자 Reynolds수, Grashof수, 평판간격을 변수로 하여 수치해 석 하였다.

Chromosome numbers and polyploidy events in Korean non-commelinids monocots: A contribution to plant systematics

  • JANG, Tae-Soo;WEISS-SCHNEEWEISS, Hanna
    • 식물분류학회지
    • /
    • 제48권4호
    • /
    • pp.260-277
    • /
    • 2018
  • The evolution of chromosome numbers and the karyotype structure is a prominent feature of plant genomes contributing to or at least accompanying plant diversification and eventually leading to speciation. Polyploidy, the multiplication of whole chromosome sets, is widespread and ploidy-level variation is frequent at all taxonomic levels, including species and populations, in angiosperms. Analyses of chromosome numbers and ploidy levels of 252 taxa of Korean non-commelinid monocots indicated that diploids (ca. 44%) and tetraploids (ca. 14%) prevail, with fewer triploids (ca. 6%), pentaploids (ca. 2%), and hexaploids (ca. 4%) being found. The range of genome sizes of the analyzed taxa (0.3-44.5 pg/1C) falls well within that reported in the Plant DNA C-values database (0.061-152.33 pg/1C). Analyses of karyotype features in angiosperm often involve, in addition to chromosome numbers and genome sizes, mapping of selected repetitive DNAs in chromosomes. All of these data when interpreted in a phylogenetic context allow for the addressing of evolutionary questions concerning the large-scale evolution of the genomes as well as the evolution of individual repeat types, especially ribosomal DNAs (5S and 35S rDNAs), and other tandem and dispersed repeats that can be identified in any plant genome at a relatively low cost using next-generation sequencing technologies. The present work investigates chromosome numbers (n or 2n), base chromosome numbers (x), ploidy levels, rDNA loci numbers, and genome size data to gain insight into the incidence, evolution and significance of polyploidy in Korean monocots.

실수 연산의 기본 성질에 대한 고등학교 2학년 학생들의 이해와 적용 능력 분석 (A Study on Understanding and Application Ability of Eleventh Graders for Basic Properties of Operations with Real Numbers)

  • 진진욱;신현용
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제45권1호
    • /
    • pp.61-74
    • /
    • 2006
  • The ability of understanding the number and number systems, grasping the properties of number systems, and manipulating number systems is the foundation to understand algebra. It is useful to deepen students' mathematical understanding of number systems and operations. The authentic understanding of numbers and operations can make it possible for the students to manipulate algebraic symbols, to represent relationship among sets of numbers, and to use variables to investigate the properties of sets of numbers. The high school students need to understand the number systems from more abstract perspective. The purpose of this study is to study on understanding and application ability of eleventh graders of basic properties of operations with real numbers.

  • PDF

A NOTE ON q-ANALOGUE OF POLY-BERNOULLI NUMBERS AND POLYNOMIALS

  • Hwang, Kyung Won;Nam, Bo Ryeong;Jung, Nam-Soon
    • Journal of applied mathematics & informatics
    • /
    • 제35권5_6호
    • /
    • pp.611-621
    • /
    • 2017
  • In this paper, we define a q-analogue of the poly-Bernoulli numbers and polynomials which is generalization of the poly Bernoulli numbers and polynomials including q-polylogarithm function. We also give the relations between generalized poly-Bernoulli polynomials. We derive some relations that are connected with the Stirling numbers of second kind. By using special functions, we investigate some symmetric identities involving q-poly-Bernoulli polynomials.

Weak Laws of Large Numbers for Weighted Sums of Fuzzy Random Variables

  • Hyun, Young-Nam;Kim, Yun-Kyong;Kim, Young-Ju;Joo, Sang-Yeol
    • Communications for Statistical Applications and Methods
    • /
    • 제16권3호
    • /
    • pp.529-540
    • /
    • 2009
  • In this paper, we present some results on weak laws of large numbers for weighted sums of fuzzy random variables taking values in the space of fuzzy numbers of the real line R. We first give improvements of WLLN for weighted sums of convex-compactly uniformly integrable fuzzy random variables obtained by Joo and Hyun (2005). And then, we consider the case that the averages of expectations of fuzzy random variables converges. As results, WLLN for weighted sums of convexly tight or identically distributed case is obtained.